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Abstract—The problem of random number generation dates back to Von Neumann’s work in 1951. Since then, many algorithms

have been developed for generating unbiased bits from complex correlated sources as well as for generating arbitrary distributions

from unbiased bits. An equally interesting, but less studied aspect is the structural component of random number generation. That

is, given a set of primitive sources of randomness, and given composition rules induced by a device or nature, how can we build

networks that generate arbitrary probability distributions? In this paper, we study the generation of arbitrary probability distributions

in multivalued relay circuits, a generalization in which relays can take on any of N states and the logical ‘and’ and ‘or’ are replaced

with ‘min’ and ‘max’ respectively. These circuits can be thought of as modeling the timing of events which depend on other event

occurences. We describe a duality property and give algorithms that synthesize arbitrary rational probability distributions. We prove

that these networks are robust to errors and design a universal probability generator which takes input bits and outputs any desired

binary probability distribution.

Index Terms—Multiple valued logics, random number generation, stochastic relays

Ç

1 INTRODUCTION

1.1 Why Study Stochasticity?

MANY biological systems exhibit stochasticity. Exam-
ples of these include gene expression [3], chemical

reactions [18], and neuron signaling [13]. However, despite
the stochasticity, often deemed as noise, they still achieve
functionalities that artificial systems cannot compete with.
A natural question arises: Is stochasticity a bug in nature or
an important tool? It is known that, in the case of random-
ized algorithms [9], stochasticity is the key to more powerful
information processing and computation.

Motivated by this, we tackle a fundamental question as a
stepping stone: Can we design networks that can generate
any desired probability distribution? An understanding of
this would be essential for the further study of probabilistic
computation.

1.2 Random Number Generation Given Structural
Constraints

The problem of generating probability distributions exists in
an important thread of work in computer science. In 1951,
Von Neumann [19] studied this problem in the context of
generating a fair coin toss from a biased coin. Knuth and
Yao [7] then studied the reverse problem of generating arbi-
trary distributions from unbiased bits (fair coins). This work
was extended by Han and Hoshi [6] and Abrahams [1] to
generating arbitrary distributions from biased distributions.

In physical systems, however, randomness arises in
specific components that can only be composed together
according to given rules. We cannot use algorithms that
assign output symbols to arbitrary coin tossing sequences.
Rather, certain structural constraints determine how physi-
cal building blocks can be composed. In essence, the prob-
lem of random number generation needs to be studied from
the perspective of physical devices and network synthesis.

In 1962, Gill [5] studied the design of deterministic
sequential machines that could transform a random input
source to an arbitrary random output source. Sheng [17]
considered probability transformers with threshold logic
elements. Recently, Wilhelm and Bruck [21] studied the
synthesis of relay circuits when given stochastic relays;
Zhou et al. [23] studied the synthesis of flow networks given
stochastic splitters; and Qian et al. [11] studied the use
of combinatorial logic circuits to transform random bit
streams, and showed that one could use probability distri-
butions to represent information.

In this paper, we will analyze random number genera-
tion in the context of multivalued relay circuits, a generali-
zation of standard relay circuits to any number of states.
This generalization is a simple abstraction of event-based
networks (such as neural networks) in which one event is
triggered upon the activation of some Boolean function of
other event activations (see Section 9). While stochasticity is
known to play a role in neural networks, it has not yet been
understood what this role is.

1.3 Deterministic Relays

We will start by introducing deterministic relays. A deter-
ministic relay switch is a two terminal object which can be
connected (closed) by a wire or left open. The state of the
switch, which can be either 0 or 1, describes an open or
closed state respectively (see Fig. 1a). These states are
complements of each other. That is, if switch x is in state 0,
then the complement �x is in state 1 and vice versa.
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When multiple switches are composed together, these net-
works are known as relay circuits. One of these, a series
composition, is formed when two switches are put end to
end. A parallel composition is formed when two switches
are composed so that the beginning terminals are connected
together and the end terminals are connected together.
Relay circuits are defined to be in the closed state 1 if there
exists a closed path from the beginning to end terminal and
0 otherwise.

Shannon showed that series and parallel compositions
can be represented by the Boolean ‘and’ and ‘or’ operations
[15]. If switches x and y are composed in series to form z1,
then z1 will only be closed if both x and y are closed. If
switches x and y are composed in parallel to form z2, then
z2 will be closed if either x or y are closed. Circuits formed
solely by series and parallel compositions are called sp cir-
cuits. We will denote the series composition of x and y by
x � y or simply xy and the parallel composition by xþ y (see
Fig. 1b). This notation will be preserved for further general-
izations of the relay circuits.

Shannon showed that non sp circuits could also be repre-
sented by Boolean operations (see Fig. 1c). The general math-
ematical representation of any relay circuits would be to find
all paths that go from the beginning to the end terminal. For
each path, take the Boolean ‘and’ of all switches along that
path; then take the Boolean ‘or’ of the values for each path.

1.4 Stochastic Relays

Recently, Wilhelm and Bruck introduced the notion of a
stochastic relay circuit [21]. These circuits are a generali-
zation of Shannon’s relay circuits; instead of having
deterministic relay switches that are in either the open or
closed state, stochastic relay circuits can exist in either
state with a specified probability. If a stochastic relay
switch x, called a pswitch, has probability p of being
closed and probability 1� p of being open, this distribu-
tion is represented by a vector v ¼ ð1� p; pÞ where vi cor-
responds to the probability of x being in state i. We say
that x realizes ð1� p; pÞ or simply x realizes p. If pswitches
x and y, which realize probabilities p and q respectively,
are composed in series, the new composition will realize
pq. If they are composed in parallel, the new composition
will realize pþ q � pq (see Fig. 2).

One of the primary questions dealt with in their work
was the generation of probability distributions using a lim-
ited number of base switch types, known as a switch set.
For example, relay circuits built with the switch set S ¼ f12g
can only use pswitches with the distribution ð12 ; 12Þ. They
proved that using the switch set S ¼ f12g, all probability dis-

tributions a
2n could be realized with at most n pswitches,

where a is a non-negative integer. Continuing, many more
results were proved not only in realizing other probability
distributions [21], [22], but also in circuit constructions such
as a universal probability generator [21] and in robustness
[8] and expressibility [22] properties of these circuits.

1.5 Multivalued Stochastic Relays

In order to study non-Bernoulli random variables, it is neces-
sary to generalize Shannon’s relays to a larger number of
states. Multivalued logics have been studied as early as in
1921 by Post [10] and followed up on by Webb [20] and
others [12]. The work presented in this paper concerns one
generalization of two-state relay circuits tomultivalued relay
circuits where we use twomultivalued functions (gates).

A multivalued switch is a relay switch that can be in any
of n states: 0, 1, 2, . . . , n � 1. We define the complement of a
switch to be n� 1� i, where i is the state of the switch.
Series and parallel compositions are redefined to ‘min’ and
‘max’, respectively, rather than the Boolean ‘and’ and ‘or’.
This means that when switches x and y are composed in
series, the overall circuit is in state minðx; yÞ and when they
are composed in parallel, the overall circuit is in state
maxðx; yÞ (see Fig. 3, examples a and b). Non-sp circuits are
also defined in a similar way to two-state circuits. The gen-
eral mathematical representation of any multivalued relay
circuit is to find all paths that go from the beginning to the
end terminal. For each path, we take the ‘min’ of all switches
along that path; then we take the ‘max’ of the values derived
for each path (Fig. 1, examples b and c still apply).

One physical understanding of this max-min algebra is
found in the timing of relay switches. Let all switches start
in the closed position and open at some time t. Then the
state of the switch will be the time t 2 f0; 1; . . . ; n� 1gwhen
the switch opens. Compose two switches, which open at
time t1 and t2, in series. If either switch opens, then the over-
all connection is broken. Therefore, the time that the series
composition will be open is minðt1; t2Þ. In the same way, we

Fig. 2. Simple examples. As stated, 1
2 is short for ð12 ; 12Þ. (a) A single

1
2-pswitch. (b) Putting (a) in parallel with a 1

2-pswitch gives 3
4. (c) Putting

(b) in series with a 1
2-pswitch gives 3

8. (d) Putting (c) in parallel with a
1
2-pswitch gives 11

16.

Fig. 1. Deterministic examples. For two states, xy is the Boolean ‘and’ of
x and y while xþ y is the Boolean ‘or’. Figures b and c also apply to mul-
tivalued relays where xy is minðx; yÞ and xþ y is maxðx; yÞ. (a) A relay
can either be opened (state 0) or closed (state 1). (b) In series, the entire
circuit can only be closed if both x and y are closed. In parallel, the entire
circuit will be closed if either x or y are closed. (c) In this example of a
non-sp circuit, we take the Boolean ‘and’ along the four possible paths,
and then apply the Boolean ‘or’ to those subsequent values.
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can compose the switches in parallel. Since both switches
need to be opened in order for the overall circuit to be open,
the time calculated for the parallel composition ismaxðt1; t2Þ.
More generally, the max-min algebra can be used to under-
stand the timing of events when an event occurence depends
on the occurence of other events, i.e., event A occurs if event
B occurs or if eventsC andD occur. Max-min functions have
been used to reason about discrete event systems [4].

Now that we have defined multivalued relays, we can
also reason about probability distributions over the n states
of a multivalued stochastic relay. If a three-state pswitch x
has probability p0 of being in state 0, p1 of being in state 1,
and p2 of being in state 2, we represent the distribution with
the vector v ¼ ðp0; p1; p2Þ and say x realizes ðp0; p1; p2Þ. If the
distribution is in the form ð1� p; 0; . . . ; 0; pÞ, we will shorten
this to simply p if the number of states can be inferred from
the context or if the equation holds for any number of states
(see Fig. 3c).

We present the following results in our paper:

1) A duality property (Section 2).
2) Networks for generating binary probability distribu-

tions (Sections 3 and 4).
3) Networks for generating rational distributions

(Section 5).
4) Robustness of the previous networks to switch errors

(Section 6).
5) Universal probability generation (Section 7).
6) Switching with partially ordered states (Section 8).
7) Discussion on applications (Section 9).

2 DUALITY

Duality is a well-known concept which plays a role in resis-
tor networks, deterministic and two-state stochastic relay
circuits. We start by characterizing duality in multivalued
circuits: Define the dual state of i as the state n� 1� i; the
dual distribution of v as the distribution �vwhere �vi ¼ vn�1�i;
the dual switch of x as the switch �x that realizes the dual

distribution of x; and the dual circuit of C as the circuit �C
that realizes the dual distribution of C.

Theorem 1 (Duality Theorem). Given a stochastic series-
parallel circuit C, we can construct �C by replacing all the
switches in C with their dual switches and by replacing series
connections with parallel connections and vice versa. (see Fig. 4).

Proof. This is shown using induction on series-parallel
connections.

Base case. The dual of a single pswitch with distribu-
tion ðp0; p1; . . . ; pn�1Þ is ðpn�1; . . . ; p1; p0Þ, which trivially
satisfies the theorem.

Inductive step. Suppose a circuit C with distribution
ðp0; p1; . . . ; pn�1Þ and a circuit C0 with distribution ðq0;
q1; . . . ; qn�1Þ satisfy the theorem, i.e., the distribution of �C

is ðpn�1; . . . ; p1; p0Þ and the distribution of �C0 is ðqn�1; . . . ;
q1; q0Þ. To prove the theorem, it is sufficient for us to

show that CC0 is the dual of �C þ �C0.
Let Cs ¼ CC0 and Cp ¼ �C þ �C0. Then Cs ¼ ðc0; c1; . . . ;

cn�1Þ and Cp ¼ ðd0; d1; . . . ; dn�1Þwhere

ck ¼
X

minði;jÞ¼k

PrðC ¼ iÞPrðC0 ¼ jÞ

¼
X

minði;jÞ¼k

piqj

dk ¼
X

maxði;jÞ¼k

Prð �C ¼ iÞPrð �C0 ¼ jÞ

¼
X

maxði;jÞ¼k

pn�1�iqn�1�j

¼
X

minðn�1�i;n�1�jÞ¼n�1�k

pn�1�iqn�1�j

¼
X

minði0;j0Þ¼n�1�k

pi0qj0 ¼ cn�1�k:

We see that d0 ¼ cn�1, d1 ¼ cn�2; . . . ; dn�1 ¼ c0, demon-
strating that Cs is the dual of Cp. tu

3 REALIZING BINARY THREE-STATE

DISTRIBUTIONS

We can now ask questions about generating probability
distributions with stochastic relay circuits. We will begin
by demonstrating how to generate binary distributions on
three states.

Fig. 3. Three-state examples. We use � to represent a deterministic
switch and � to represent a pswitch. (a) A comparison of the truth tables
for two-state and three-state relay switches. (b) A simple three-state
deterministic example. Evaluating series connections using min and par-
allel connections as max, we find that this circuit is in state 1. (c) A simple
three-state stochastic example. On the top, we put a ð12 ; 0; 12Þ pswitch in

parallel with a deterministic switch in state 1. Then, with 1
2 probability we

get maxð0; 1Þ and with 1
2 probability we get maxð2; 1Þ, which yields a

ð0; 12 ; 12Þ circuit. Similarly, the bottom circuit realizes distribution ð12 ; 14 ; 14Þ.

Fig. 4. Three-state duality example. Remember that the three-state
1
2-pswitch is the shorthand for the ð12 ; 0; 12Þ pswitch. (a) A two element
duality example. (b) A duality example on a larger circuit. Note that since
the pswitches are symmetric distributions (duals of themselves), only
the compositions are changed.
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In writing out algorithms and circuit constructions we
will use the notation introduced earlier for series and paral-
lel connections: xy and xþ y will denote series and parallel
connections respectively. We will use this notation loosely,

i.e., ð12 ; 0; 12Þð12 ; 12 ; 0Þ represents a circuit formed by composing

a ð12 ; 0; 12Þ pswitch in series with a ð12 ; 12 ; 0Þ pswitch.

Lemma 1 (Three-state sp composition rules). Given p ¼
ðp0; p1; p2Þ and q ¼ ðq0; q1; q2Þ, let x ¼ pq and y ¼ pþ q.
Then,

x0 ¼ p0q0 þ p0q1 þ p0q2 þ p1q0 þ p2q0

¼ 1� ð1� p0Þð1� q0Þ
x1 ¼ p1q1 þ p1q2 þ p2q1

x2 ¼ p2q2

y0 ¼ p0q0

y1 ¼ p1q1 þ p1q0 þ p0q1

y2 ¼ p2q2 þ p2q1 þ p2q0 þ p1q2 þ p0q2

¼ 1� ð1� p2Þð1� q2Þ:
Proof. The above expressions follow from enumerating all

32 switch combinations. tu
Theorem 2 (Binary three-state Distributions). Using the

switch set S ¼ f12g and the deterministic switches, we can real-

ize all 3-state distributions of the form ð a
2n ;

b
2n ;

c
2nÞ using at

most 2n� 1 pswitches with the recursive construction of Algo-
rithm 1 (see Fig. 5 for an example).

Algorithm 1. Binary three-state construction

Input: A probability distribution p of the form ð a
2n ;

b
2n ;

c
2nÞ

Output: A recursive constructive of p
if p 2 S then

return p;
else if a

2n >
1
2 then

return ð12 ; 0; 12Þða�2n�1

2n�1 ; b
2n�1 ;

c
2n�1Þ;

else if aþb
2n > 1

2 then
return ð a

2n�1 ;
2n�1�a
2n�1 ; 0Þ þ ð12 ; 0; 12Þð0; 2

n�1�c
2n�1 ; c

2n�1Þ;
else

return ð a
2n�1 ;

b
2n�1 ;

c�2n�1

2n�1 Þ þ ð12 ; 0; 12Þ;
end

Proof. For any distribution p ¼ ðp0; p1; p2Þ, there exists some

smallest k such that
Pk

i¼0 pi >
1
2, which correspond to the

three recursive cases enumerated above. We can verify
that for each of these cases:

1) The decompositions obey the three-state composi-
tion rules.

2) The switches are valid (non-negative probabilities
and sum to 1)

Since each algorithm’s decomposition uses switches of
type ð a

2n�1 ;
b

2n�1 ;
c

2n�1Þ, then we will eventually have n ¼ 0,
corresponding to a deterministic switch; at this point the
algorithm terminates and has successfully constructed

any ð a
2n ;

b
2n ;

c
2nÞ.

We will now prove that we use at most 2n� 1
pswitches for all n � 1. Define fn as the maximum num-
ber of pswitches used in the construction of any distribu-

tion ð a
2n ;

b
2n ;

c
2nÞ. Then,

f1 ¼ 1 (1)

fn ¼ maxðfn�1 þ 1; 2ðn� 1Þ þ 1; fn�1 þ 1Þ
¼ maxðfn�1 þ 1; 2n� 1Þ; (2)

where (1) is shown trivially, and (2) comes from the three
cases of Algorithm 1. Note that we are using a previous
result [21] that two state distributions of form ð a

2n ;
b
2nÞ use

at most n switches. We are now left with a simple induc-
tion exercise.

Base case. f1 ¼ 1 ¼ 2ð1Þ � 1.
Inductive step. Assume fk ¼ 2k� 1. Then,

fkþ1 ¼ maxðfk þ 1; 2ðkþ 1Þ � 1Þ
¼ maxð2k; 2ðkþ 1Þ � 1Þ
¼ 2ðkþ 1Þ � 1:

So fk ¼ 2k� 1 ) fkþ1 ¼ 2ðkþ 1Þ � 1. tu
It is useful at this time to provide some intuition regard-

ing the algorithm. We can view the original distribution as
a series of blocks dividing up the interval ½0; 1� (see Fig. 6).
By applying the algorithm, we are separating this larger

interval into smaller intervals ½0; 12� and ½12 ; 1�, cutting any

Fig. 5. Realizing three-state distribution. (a) We want to realize ð58 ; 14 ; 18Þ.
This falls under the first case. (b) Now we have an unconstructed distri-
bution that falls under the second case. (c) There are two unconstructed
distributions. The top one falls under case 3 and the bottom one falls
under case 2. (Note that case 2 is equivalent to case 1 for p0 ¼ 1

2).
(d) The final circuit.

Fig. 6. Block-interval visualization of three-state algorithm. We want to
realize ð58 ; 14 ; 18Þ. A � symbol marks where the cuts occur which corre-
spond to the use of one pswitch. (a) We start with one interval split into
blocks corresponding to the pswitch probabilities. (b) When we cut ½0; 1�
in half, we get two intervals; the blocks are cut and the probabilities
change according to the new interval size. (c) The second application
of the algorithm. (d) When we are left with single block-interval pairs,
we know we are done since the deterministic switch is in our switch set.
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blocks on that boundary. When this separation occurs, the
total size of the block is decreased (namely, in half), and so
the probabilities representing those intervals change—these
probabilities are precisely those of the algorithm.

It is interesting to point out that this interpretation bears
remarkable similarity to Han and Hoshi’s interval algorithm
[6]. The main difference is that we require a static circuit
which cannot change dynamically based on the randomness
created thus far. This structural constraint prevents a
straightforward application of the interval algorithm.

4 REALIZING BINARY N-STATE DISTRIBUTIONS

Intuitively, we can describe the algorithm for N states in the
same way as for three states. We first find the smallest index

k for which
Pk

i¼0 pi >
1
2. Then based on the index k, we can

decompose our distribution in a way corresponding to the
interval-block visualization; the only difference is that each
interval can now have up toN block-types instead of just 3.

Theorem 3 (Binary N-state Distributions). Using the switch
set S ¼ f12g and the deterministic switches, we can realize all
N-state distributions of the form ðx02n ; x12n ; . . . ; xN�1

2n Þ with at

most fn;N ¼

2n � 1; n 	 dlog2Ne
2dlog2Ne � 1þ ðN � 1Þðn� dlog2NeÞ; n � dlog2Ne;

�

switches, using the recursive circuit construction of Algorithm 2
(see Fig. 7 for an example).

Algorithm 2. Binary N-state construction. Note that we

are using 1
2 as a shorthand for ð12 ; 0; . . . ; 0; 12Þ as explained

in the introduction.

Input: A probability distribution p of the form ðx02n ; x12n ; . . . ; xN�1
2n Þ

Output: A recursive construction of p
if p 2 S then

return p;
else if x0

2n >
1
2 then

return 1
2 ðx0�2n�1

2n�1 ; x1
2n�1 ; . . . ;

xN�1
2n�1 Þ;

else if x0þx1
2n > 1

2 then

return ð x0
2n�1 ;

2n�1�x0
2n�1 ; . . .Þ þ 1

2 ð0; x0þx1�2n�1

2n�1 ; x2
2n�1 ; . . .Þ;

else if ... then
...;

else
return ð x0

2n�1 ;
x1

2n�1 ; . . . ;
xN�1�2n�1

2n�1 Þ þ 1
2;

end

Proof. Because the proof is primarily algebraic and similar in
structure to that of the three state relays, we will detail it in
the appendix,which can be found on theComputer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TC.2015.2401027 available online. tu
We briefly note that our bounds in Theorem 3 are tight

when circuits are generated from Algorithm 2. That is, a
probability distribution exists such that following Algo-
rithm 2 will exactly achieve the upper bound. This follows
from the fact that the inductive steps in our proof consisted
entirely of equalities. However, it is still an open problem

whether one can achieve better bounds by using circuits
outside the range of the given algorithm.

5 REALIZING RATIONAL DISTRIBUTIONS

Given the previous results, a natural question arises. Can
we also generate probability distributions over non-binary
fractions? More generally, can we generate distributions for
any rational distribution? This question was studied for the
two-state case by Wilhelm, Zhou, and Bruck [21], [22] for
distributions of the form ð a

qn ;
b
qnÞ. In their work, they demon-

strated algorithms for realizing these distributions for any q
that is a multiple of 2 or 3. In addition, they proved that for
any prime q > 3, no algorithm exists that can generate all

ð a
qn ;

b
qnÞ using the switch set S ¼ f1q ; 2q ; . . . ; q�1

q g.
We approach the question of realizing rational N-state

distributions from two angles and demonstrate algorithms
for each. In the first case, we show how to reduce the gener-
ation of any N state distribution to the generation of several

two-state distributions using only a 1
2 switch. In the second

case, we show another generalization of previous binary N
state results that allows us to generate arbitrary rational dis-
tributions, albeit with a larger switch set. The key for these
algorithms lies in a generalization of the block-interval con-
struction of binary distributions.

Lemma 2 (Block-interval construction of distributions). Let
p ¼ ðp0; p1; . . . ; pN�1Þ be any distribution. Then given any
‘cut’, represented by the distribution 1� q ¼ ðq; 0; . . . ; 0;
1� qÞ,

ðp0; p1; . . . ; pN�1Þ

¼ p0
q
; . . . ;

pk�1

q
;
q �Pk�1

i¼0 pi
q

; 0; . . .

 !

þ ð1� qÞ . . . ; 0;

Pk
i¼0 pi � q

1� q
;
pkþ1

1� q
; . . . ;

pN�1

1� q

 !" #

¼ p0
q
; . . . ;

pk�1

q
;
q �Pk�1

i¼0 pi
q

; 0; . . .

 !
þ ð1� qÞ

" #

� . . . ; 0;

Pk
i¼0 pi � q

1� q
;
pkþ1

1� q
; . . . ;

pN�1

1� q

 !
;

where k is the index satisfying q �Pk�1
i¼0 pi, q 	

Pk
i¼0 pi,

Fig. 7. Realizing four-state distribution. We use the N-state algorithm on
the a four-state distribution. A � symbol represents the pswitch
ð12 ; 0; 0; 12Þ. (a) We want to realize ð14 ; 38 ; 14 ; 18Þ. Initially, p0 þ p1 >

1
2. (b) For

the top distribution, p0 þ p1 þ p2 >
1
2. For the bottom distribution,

p0 þ p1 >
1
2. (c) For the top distribution, p0 þ p1 þ p2 þ p3 >

1
2. For the bot-

tom distribution, p0 þ p1 þ p2 >
1
2. (d) The final circuit.
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Proof. The equation follows directly from the max-min com-
position rules. tu
Essentially, if a distribution is represented as blocks in an

interval (Fig. 8), then any “cut” on this interval corresponds
to a reduction of this distribution into a pair of distributions
that can be represented by the resulting intervals.

5.1 State Reduction

Given the results already proved on two-state distributions,
one natural way to tackle N states is to first reduce the given
N-state distribution into compositions of two-state distribu-
tions. Then, if algorithms already exist for those two-state
forms, we are done.

Theorem 4 (State Reduction Algorithm). Using the switch
set S ¼ f12g, we can reduce any N-state distribution of the
form ðx0q ; x1q ; . . . ; xN�1

q Þ into at most N � 1 two-state distribu-

tions of the form ð. . . ; xiq ; . . . ;
xj
q ; . . .Þ using at most flog2q;N ¼

2dlog2Ne � 1þ ðN � 1Þðlog2q � dlog2NeÞ switches with the
recursive construction of Algorithm 3 (for an example, see
Fig. 9a).

Algorithm 3. State reduction construction

Input: A probability distribution p of the form ðx0q ; x1q ; . . . ; xN�1
q Þ

Output: A recursive construction of p
if p is a two state distribution then

return p;
else if x0

q > 1
2 then

return 1
2 ð2x0�q

q ; 2x1q ; . . . ; 2xN�1
q Þ;

else if x0þx1
q > 1

2 then
return ð2x0q ; q�2x0

q ; . . .Þ þ 1
2 ð0; 2x0þ2x1�q

q ; 2x2q ; . . .Þ;
else if ... then

...;
else

return ð2x0q ; 2x1q ; . . . ; 2xN�1�q
q Þ þ 1

2;
end

Proof. The proof is essentially identical to Theorem 3, so we
will simply sketch it here. First, we know from Lemma 2
that the breakdown of probabilities in each round is
valid. To prove the complexity, we note that we can sim-
ply replace n (from Theorem 3) with log2q since we will

have reduced all switches to at most two states at
that point. tu

5.2 Denominator Reduction

The second approach to realizing rational N-state distribu-
tions is to use a different switch set to directly reduce
the power in the denominator. The intuition comes from a
generalization of the block-interval construction. Rather

than just cutting it at one point, i.e., at 1
2 for realizing binary

distributions, we can cut it at the points 1
q ;

2
q ; . . . ; and q�1

q to

get q equally sized intervals.

Theorem 5 (Denominator Reduction Algorithm). Using
S ¼ f12 ; 13 ; 14 ; . . . ; 1qg and the deterministic switches, we
can realize any distribution ðx0qn ; x1qn ; . . . ; xN�1

qn Þ using at most

qdlogqNe� 1þ ðN � 1Þðq � 1Þðn� dlogqNeÞ switches with the

recursive construction of Algorithm 4 (for an example, see
Fig. 9b).

Algorithm 4. Denominator reduction construction

Input: A probability distribution p of the form ðx0qn ; x1qn ; . . . ; xN�1
qn Þ

Output: A recursive construction of p
Define the following quantities for j ¼ 0; 1; 2; . . . ; q;

kj ¼ the smallest index at which
Pkj

i¼0 pi >
j
q;

Lj ¼
Pkj

i¼0
xi�jqn�1

qn�1 ;

Rj ¼ ðjþ1Þqn�1�
Pkjþ1�1

i¼0
xi

qn�1 ;

if p 2 S then
return p;

else
return ð x0

qn�1 ; . . . ;
xk1�1

qn�1 ; R0; 0; . . .Þ þ 1
2 ð
 
 
 ; 0; L1;

xk1þ1

qn�1 ; . . . ;
xk2�1

qn�1 ;

R1; 0; . . .Þ þ 
 
 
 þ 1
q�1 ð
 
 
 ; 0; Lq�1;

xkq�2þ1

qn�1 ; . . . ;
xkq�1�1

qn�1 ; Rq�1;

0; . . .Þþ 1
q ð
 
 
 ; 0; Lq;

xkq�1þ1

qn�1 ; . . . ; xN�1
qn�1 Þ;

end

Proof. The idea of the construction is to perform q � 1 itera-
tions of the block-interval construction lemma for each
reduction of a pswitch. WLOG, let the original interval

Fig. 8. Block-interval visualization (rational). We want to realize
ðp0; p1; p2; p3Þ. A � symbol marks where the cut occurs, which corre-
sponds to the use of one pswitch. (a) We start with one interval split into
blocks corresponding to the pswitch probabilities. (b) When we cut with
pswitch ðq; . . . ; 1� qÞ, the interval is separated into two intervals: ½0; q�
and ½q; 1�.

Fig. 9. Algorithm illustrations. (a) An example of the state recursion algo-
rithm. (b) An example of the denominator recursion algorithm.
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have length 1. Then the first cut at q�1
q gives intervals of

length q�1
q and 1

q. The second cut at q�2
q�1 of the

q�1
q interval

gives intervals of length q�1
q

q�2
q�1 ¼ q�2

q and q�1
q

1
q�1 ¼ 1

q. The

third cut leaves an interval of length q�1
q

q�2
q�1

q�3
q�2 ¼ q�3

q and

another 1
q interval. As this continues, we get q intervals of

length 1
q. Our expression is exactly that of the block-

interval construction lemma applied to the above
description. Then since at each ‘round’ of these decom-
positions, we reduce the exponent of the denominator by
1, we will eventually terminate when n ¼ 0, which is a
deterministic switch.

The proof for the complexity is similar to the N-state
binary proof, so we will simply sketch it here. Let fq;n;N be
the number of switches needed. Then we have the base
cases of fq;n;1 ¼ 0 and fq;0;N ¼ 0. Now, we know that
fq;n;N ¼ maxi1;i2;...;iq :

P
j
ij¼Nþq�1ðq � 1þPj fq;n�1;ijÞ. Then

assuming our expression holds for all fq;n̂;N such that
n̂ 	 n� 1, we can claim that the indices maximizing

the given expression must be when all ij 2 fdNþqþ1
q e;

bNþqþ1
q cg. Then we can simply verify that the resulting

expressionwill evaluate to the closed form. tu
It is interesting to also note that the above constructions

allow us to use any switch set of the form f12 ; 13 ; 15 ; . . . ; 1
pmax

g
to realize any distribution with a denominator that can be
factored into primes 2; 3; 5; . . . ; pmax.

6 ROBUSTNESS OF PROBABILITY GENERATION

The above algorithms looked at probability generation
given a fixed switch set of distributions. However, in physi-
cal systems, it may be the case that the generation of ran-
domness is error-prone. If we want to use a pswitch with
distribution ðp0; p1Þ, the physical pswitch may actually have
distribution ðp0 þ �; p1 � �Þ. Loh, Zhou, and Bruck looked at
generating two-state probabilities given pswitches with
errors [8]. They found that any binary distribution gener-
ated according to their algorithm, regardless of size, had
error bounded by 2�.

We examine the same problem in the context of multival-
ued distribution generation and show that a generalized
result holds for any number of states. Define the error of a
multivalued distribution as the largest error over all the
states. That is, if a pswitch with desired distribution ðp0;
p1; . . . ; pN�1Þ has an actual distribution of ðp0 þ �0; p1þ
�1; . . . ; pN�1 þ �N�1Þ, then the error of the switch ismaxij�ij.

We will begin by demonstrating robustness for N-state
binary distributions generated according to the algorithm in
Section 4. This algorithm uses switches from the switch set

S ¼ f12g as well as the deterministic switches. For our analy-

sis, we allow errors on the active states of pswitches. As a
result, deterministic switches have no errors since the sum

of the single active probability must equal 1. The 1
2-pswitch

has distribution ð12 þ �̂; 0; . . . ; 0; 12 � �̂Þ, j�̂j 	 �.

Lemma 3 (Error Bound on Boundary States). Generate any
distribution ð. . . ; 0; xi2n ; . . . ; xk2n ; 0; . . .Þ according to the binary
N-state algorithm where state i is the smallest active state and
state k is the largest active state. If we allow at most � error on

the pswitches in the switch set, then the actual distribution
generated will be ð. . . ; 0; xi2n þ di; . . . ;

xk
2n þ dk; 0; . . .Þ where

jdij 	 2�, jdkj 	 2�.

Proof. In each step of the algorithm, a distribution r ¼
ð. . . ; ri; . . . ; rk; . . .Þ is made out of two pswitches
p ¼ ð. . . ; pi; . . . ; pj; . . .Þ and q ¼ ð. . . ; qj; . . . ; qk; . . .Þ where
i 	 j 	 k. The composition is in the form r ¼ p þ
ð12 ; 0; . . . ; 0; 12Þq. We will prove robustness using induction

on switches p and q.
Base case. For any deterministic distribution, the

lemma is trivially satisfied.
Inductive step. Assume we are given p and q satisfy-

ing the inductive hypothesis. That is, for p ¼ ð. . . ; piþ
Di; . . . ; pj þ Dj; . . .Þ, q ¼ ð. . . ; qj þ dj; . . . ; qk þ dk; . . .Þ, jDij;
jDjj; jdjj; jdkj 	 2�. Then the errors for states i and k on dis-

tribution r ¼ pþ ð12 þ �̂; 0; . . . ; 0; 12 � �̂Þq can be calculated

as follows:

jerrori<jj ¼ 1

2
þ �̂

� �
ðpi þ DiÞ � 1

2
pi

����
����

¼ 1

2
Di þ �̂ðpi þ DiÞ

����
����

	 1

2
jDij þ j�̂jjpi þ Dij 	 2�

jerrori¼jj ¼ 1

2
þ �̂

� �
þ 1

2
� �̂

� �
ðqi þ diÞ � 1

2
þ 1

2
qi

� �����
����

¼ 1

2
di þ �̂ð1� ðqi þ diÞÞ

����
����

	 1

2
jdij þ j�̂jj1� ðqi þ diÞj 	 2�

jerrork>jj ¼ 1

2
� �̂

� �
ðqk þ dkÞ � 1

2
qk

����
����

¼ 1

2
dk � �̂ðqk þ dkÞ

����
����

	 1

2
jdkj þ j�̂jjqk þ dkj 	 2�

jerrork¼jj ¼ 1

2
� �̂

� �
þ 1

2
þ �̂

� �
ðpk þ DkÞ � 1

2
þ 1

2
pk

� �����
����

¼ 1

2
Dk � �̂ð1� ðpk þ DkÞÞ

����
����

	 1

2
jDkj þ j�̂jj1� ðpk þ DkÞj 	 2�:

Then we find that the errors for states i and k still satisfy
the inductive hypothesis, so we are done. tu
Using this lemma, we are able to prove robustness of our

algorithms for both binary and rational probability distribu-
tions. Note that the robustness of the state reduction algo-
rithm for rational distributions can be shown to follow from
the same proof as that of the binary robustness result. We
leave the proofs to the appendix, available in the online sup-
plemental material, because they are simply an inductive
proof that uses algebraic manipulations similar to those in
the previous lemma.

Theorem 6 (Robustness of Binary N-state Distributions).
Generate any distribution ðx02n ; x12n ; . . . ; xN�1

2n Þ according to the
binary N-state algorithm. If we allow the pswitches in the
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switch set S ¼ 1
2 to have up to � error in the active states,

then the actual distribution ðx02n þ d0;
x1
2n þ d1; . . . ;

xN�1
2n þ dN�1Þ

has errors jdij 	 3�, jd0j; jdN�1j 	 2�.

Theorem 7 (Robustness of Rational Distributions). Gener-
ate any distribution ðx0qn ; x1qn ; . . . ; xN�1

qn Þ according to the

denominator reduction algorithm. If we allow the pswitches

in the switch set S ¼ f12 ; . . . ; 1qg to have up to � error in the

active states (e.g. j�̂j 	 �), then the actual distribution ðx0qn þ
d0;

x1
qn þ d1; . . . ;

xN�1
qn þ dN�1Þ has errors jdij 	 ðq þ 1Þ�, jd0j;

jdN�1j 	 q�.

7 UNIVERSAL PROBABILITY GENERATOR

Up till now, we have only looked at circuits with set
switches and described algorithms for realizing specific
probability distributions. A next question is: What about cir-
cuits that can implement various distributions based on
input switches? Wilhelm and Bruck approached this prob-
lem for the two-state version [21] by constructing a circuit
which they called a Universal Probability Generator (UPG).
This circuit maps n deterministic bits into output probabili-
ties of the form x0

2n in increasing order. In other words, any

probability with denominator 2n can be generated by setting
the input bits to its binary representation.

This functionality alone is not surprising since it can eas-
ily be done with an exponential number of switches using a
tree-like structure: take the circuit for each probability and
hook them up together with the appropriate input switches.
The remarkable result is that the UPG only requires a linear
number of switches in n.

In this section we generalize their result to creating a
N-state UPG. The N-state UPG will be able to realize any
binary probability distribution of the form ðx02n ; x12n ; . . . ; xN�1

2n Þ
using OðnN�1Þ switches.

7.1 An Alternate Proof for the Two-State UPG

The discovery of the two-state UPG found in [21] is through
a stroke of genius: A circuit is proposed, and then an induc-
tive argument is applied to prove the correctness of the cir-
cuit. Here, we will provide a new methodical derivation of
their two-state UPG, which will give us the intuition
required to generalize to N states. Our strategy is to first

construct a naive circuit that uses an exponential number of
switches, but correctly implements our desired functional-
ity. Then we will use algebraic rules to reduce the algebraic
representation of the circuit to simpler forms, the last of
which will coincide with the circuit presented by Wilhelm
and Bruck.

Definition. (Two-state UPG). A two-state UPG Un is a cir-
cuit that realizes distributions of the form ðx02n ; x12nÞ using

nþ 1 input bits which we will refer to as r0, r1, ..., rn. r0 will
represent the deterministic bit, while rn; rn�1; . . . ; r2; r1
will represent the fractional bits. By appropriately setting ri,
the circuit Un will realize the corresponding distribution.

As an example, we look at the input-output mappings
for the circuit U3. If we input r ¼ 0001 (i.e., r0 ¼ 0; r3 ¼
0; r2 ¼ 0; r1 ¼ 1), the circuit will realize ð18 ; 78Þ since 1

8 ¼
0:0012. The input 0101 will realize ð58 ; 38Þ since 5

8 ¼ 0:1012 (see

Fig. 10a).
The motivation for the UPG circuit comes from an inter-

esting property in the truth table. For example, let us
enumerate all the outputs for U3 (Fig. 10a). For each row
(input), we ask the following questions: What would the
output of U2 be given the inputs r0; r2; r1 that were used for
U3? Is there a relationship to the construction of the U3 out-
put probability?

If we calculate these outputs, we find that they are the
same probability distributions used in the binary algorithm
for two-states (Figs. 10b and 10c). From here, the (exponen-
tial) recursive construction is straightforward.

Lemma 4. A two-state UPG Un with inputs r0; rn; . . . ; r2; r1 can
be constructed with an exponential number of switches using
the recursive construction in Fig. 11, where the n bits used in
Un�1 are r0; rn�1; . . . ; r2; r1. Specifically,

Un ¼ Ln þ 1

2
;
1

2

� �
Rn;

Ln ¼ r0n 
 0þ �r0nUn�1;

Rn ¼ r0nUn�1 þ �r0n 
 1;

where r0n ¼ r0 þ rn and �r0n ¼ �r0�rn.

Proof. This can be seen from Fig. 10, but an inductive proof
is detailed in the appendix, available in the online sup-
plemental material. tu

Lemma 5. A two-state UPG Un with inputs r0; rn; . . . ; r2; r1 can
be constructed with a linear number of switches using either of
the two recursive constructions in Fig. 12, where the n bits
used in Un�1 are r0; rn�1; . . . ; r2; r1.

Fig. 10. Two-state universal probability generator (UPG) mappings. (a) A
mapping for a UPG that generates distributions of the form ðx08 ; x18 Þ. (b)
Removing r3, we look at the inputs to a UPG that generates distributions
of the form ðx04 ; x14 Þ. (c) Notice that the B-algorithm decompositions of the
probabilities of part (a) correspond to those in part (b).

Fig. 11. Two-state exponential UPG. This is a UPG derived directly from
the B-algorithm. It uses an exponential number of switches since Un

uses two copies of Un�1 in its recursive construction.
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Proof. We will prove this by algebraically reducing the
exponential UPG. Let pi ¼ ð12 ; 12Þ be i.i.d. Then,

Un ¼ Ln þ pnRn

¼ r0n 
 0þ �r0nUn�1 þ pnðr0nUn�1 þ �r0n 
 1Þ
¼ �r0nUn�1 þ pnðr0nUn�1 þ �r0nÞ
¼ Un�1ð�r0n þ r0npnÞ þ �r0npn

¼ Un�1ð�r0n þ pnÞ þ �r0npn:

This is exactly the form of the series parallel construction
in Fig. 12. One caveat to note is that we have two copies
of pn in our proof, which would suggest that they need to
be jointly distributed. It turns out that we can actually
use two independent switches as shown in Fig. 12. The
reason is because switches r̂0 and r̂n ensure that only one
of the switches is ever used.

Un ¼ Ln þ pnRn

¼ r0n 
 0þ �r0nUn�1 þ pnðr0nUn�1 þ �r0n 
 1Þ
¼ �r0nUn�1 þ pnðr0nUn�1 þ �r0nÞ
¼ ½Un�1�½�r0n� þ ½�r0n�½r0n�½�r0n�

þ ½Un�1�½r0n�½pn� þ ½�r0n�½pn�:

This is exactly the form of the non-series parallel con-
struction in Fig. 12 tu
The result thus far is nice, but one feels somewhat unsat-

isfied at the number of times r0 must be used. We solve this
problem to get to the final form of Wilhelm and Bruck’s
two-state UPG.

Theorem 8. A two-state UPG Un with inputs r0; rn; . . . ; r2; r1
can be constructed with a linear number of switches using
either of the two recursive constructions in Fig. 14, where the
n bits used in Un�1 are r0; rn�1; . . . ; r2; r1.

Proof. We prove that the circuits in Figs. 12 and 14 are
equivalent by using induction. Base case. U0 ¼ �r0 ¼ �r0U

0
0.

Inductive step. Assume that Un�1 ¼ r0U
0
n�1. Then,

Un ¼ Un�1ð�rn�r0 þ pnÞ þ pn�rn�r0

¼ �r0U
0
n�1ð�rn�r0 þ pnÞ þ pn�rn�r0

¼ �r0ðU 0
n�1ð�rn�r0 þ pnÞ þ pn�rnÞ

¼ �r0ðU 0
n�1ð�rn þ pnÞ þ pn�rnÞ ¼ �r0U

0
n:

tu
In this final form, the series-parallel circuit uses 2n

pswitches and 2nþ 1 deterministic switches. The non-sp

construction uses n pswitches and 3nþ 1 deterministic
switches.

Before we can generalize to N states, we need to define
some new notation and equalities. Define the two-state
UPG U½i;iþ1�;n to be a circuit generating probability x0

2n on state

i and x1
2n on state iþ 1.

Under this notation, the previous results we proved were
for U½0;1�;n. We can extend these results to U½i;iþ1�;n with the
following changes:

1) The input bits r will take on values i and iþ 1
instead of 0 and 1 respectively

2) The pswitch pn will take on values i and iþ 1 with 1
2

probability each instead of taking on values 0, 1 with
equal probability.

But what if we didn’t use values i and iþ 1 for r; pn?

Lemma 6. Let U½i;iþ1�;nða; bÞ be a circuit identical to U½i;iþ1�;n
except that r; pn take on values a and b. Our previous results
for probability generation are for U½i;iþ1�;nði; iþ 1Þ. Then if

a 	 i, b � iþ 1,

U½i;iþ1�;nði; iþ 1Þ ¼ ðiþ U½i;iþ1�;nða; bÞÞðiþ 1Þ:

Proof. U½i;iþ1�;nða; bÞ will realize the desired distribution on
states a and b. Then if a 	 i, b � iþ 1, it is trivially that
taking the max of i and the min of iþ 1 will give us the
same distribution on states i and iþ 1. tu

We want to avoid this messy notation for future general-
izations. All future instances of U½i;iþ1�;n are actually repre-
senting ðiþ U½i;iþ1�;nÞðiþ 1Þ. In other words, U½i;iþ1�;n will

always generate the ‘correct’ distribution on states i and
iþ 1 as long as r; pn take on values a 	 i and b � iþ 1.

7.2 Three-State UPG

The three-state UPG can now be derived in the same way.
Because the proofs are almost identical in structure, we will
only detail them in the appendix, available in the online
supplemental material. In essence, we first construct an
exponential three-state UPG that follows closely from the
algorithm for realizing three-state distributions. Then, we
will algebraically reduce it to a quadratic construction and
remove repetitive bits.

Definition. (Three-state UPG). A Three-state UPG U½0;2�;n is
a circuit that generates distributions of the form ðx02n ; x12n ; x22nÞ
using two sets of nþ 1 input bits r; s. The notation ½0; 2� in
the subscript makes it explicit that the states we are generat-
ing a distribution for are 0, 1, and 2. The input bits r and s
will take on values 0 or 2; when the bits r, in the order
r0; rn; rn�1; . . . ; r2; r1 are set to the binary representation of x0

2n

and the bits s, in the order s0; sn; sn�1; . . . ; s2; s1 are set to the
binary representation of x0

2n þ x1
2n (with the symbol 2 replacing

the Boolean 1), then the circuit U½0;2�;n will realize distribu-

tion ðx02n ; x12n ; x22nÞ. In other words, to realize any desired binary

probability ðx02n ; x12n ; x22nÞ, we set the input bits r and s to p0 and

p0 þ p1 respectively.
As an example, we look at the input-output mappings

for the circuit U½0;2�;2. If we input r ¼ 002; s ¼ 020, the circuit

will realize ð14 ; 14 ; 12Þ since 1
4 ¼ 0:012 and

1
4 þ 1

4 ¼ 1
2 ¼ 0:102. The

Fig. 12. Two-state UPG reduced. After reducing the exponential UPG,
we get two linear UPGs. One is an sp-circuit and uses two stochastic
switches. The other is non-sp and uses one stochastic switch.
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input r ¼ 020; s ¼ 022will realize ð12 ; 14 ; 14Þ since 1
2 ¼ 0:102 and

1
2 þ 1

4 ¼ 3
4 ¼ 0:112. (see Fig. 13a).

Again, the motivation for the exponential UPG comes
from an interesting property in the truth table of U½0;2�;2.
We first enumerate all outputs given inputs corresponding
to valid probability distributions. For each row (input), we
ask:What are the outputs ofU½0;1�;1; U½1;2�;1; U½0;2�;1 if we use the

inputs r0; r1 for U½0;1�;1, the inputs s0; s1 for U½1;2�;1, and r0;

r1; s0; s1 for U½0;2�;2? Is there a relationship to the construction

of the U½0;2�;1 output probability? The answer is yes. We find

that they are the same probability distributions that are used
in the binary algorithm for three-states (Figs. 13b and 13c).

Lemma 7. A three-state UPG U½0;2�;n with inputs r0; rn; . . . ;
r2; r1 and s0; sn; . . . ; s2; s1 can be constructed with an expo-
nential number of switches using the recursive construction in
Fig. 15, where the bits used in U½0;1�;n�1 are r0; rn�1; . . . ; r2; r1,

the bits used in U½1;2�;n�1 are s0; sn�1; . . . ; s2; s1, and the bits

used in U½0;2�;n�1 are r0; rn�1; . . . ; r2; r1 and s0; sn�1; . . . ;

s2; s1.

Now that we have a three-state exponential UPG, we
can use algebraic manipulation like what was used in the

two-state case to reduce the exponential number of switches
to our final form.

Lemma 8. A three-state UPG U½0;2�;n with inputs r0; rn; . . . ;
r2; r1 and s0; sn; . . . ; s2; s1 can be constructed with a quadratic
number of switches using either of the two recursive construc-
tions in Fig. 16, where the bits used in U½0;1�;n�1 are r0;

rn�1; . . . ; r2; r1, the bits used in U½1;2�;n�1 are s0; sn�1; . . . ;

s2; s1, and the bits used in U½0;2�;n�1 are r0; rn�1; . . . ; r2; r1 and

s0; sn�1; . . . ; s2; s1.

Theorem 9. A three-state UPG U½0;2�;n with inputs r0; rn; . . . ;
r2; r1 and s0; sn; . . . ; s2; s1 can be constructed with a quadratic
number of switches using either of the two recursive construc-
tions in Fig. 17, where the bits used in U½0;1�;n�1 are r0;

rn�1; . . . ; r2; r1, the bits used in U½1;2�;n�1 are s0; sn�1; . . . ;

s2; s1, and the bits used in U½0;2�;n�1 are r0; rn�1; . . . ; r2; r1 and

s0; sn�1; . . . ; s2; s1.

Fig. 13. Three-state UPG mapping. The mapping for a UPG that generates distributions of the form ðx04 ; x14 ; x24 Þ. Here we notice that y0 is being used a
couple of times. Again, we don’t make predictions about inputs that don’t correspond to a probability distribution: this includes both those with a sum
greater than 1 and those for which the y encoding is less than the x encoding (which would mean a negative x1

2n value).

Fig. 15. Three-state exponential UPG. We design a UPG directly from
the algorithm. Note that this uses an exponential number of switches
since the recursion uses two copies of U½0;2�;n�1.

Fig. 14. Two-state UPG removed bit. Even though r0 was important in
controlling the cases of our algorithm, it turns out we can remove it from
the recursive construction and just append it at the end. Note that U 0

n

only uses bits rn; . . . ; r2; r1.
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We will use the notation U½i;iþ2�;n to denote a three-state
UPG over the states i; iþ 1; iþ 2.

7.3 N-State UPG

The steps are proofs for generalizing to N states are identi-
cal to the three-state version except that the variables L
and R are generalized. Therefore, we will simply state the
theorem and circuit generalization.

Definition. (N-state UPG). An N-state UPG U½0;N�1�;n is a
circuit that generates distributions of the form ðx02n ; x12n ; . . . ;
xN�1
2n Þ using N � 1 input vectors r0; r1, ..., rN�2, where each

vector ri has nþ 1 bits ri0, ri1, ..., rin. When the input vectors
ri ¼ ðri0; rin; riðn�1Þ; . . . ; ri2; ri1Þ are set to the binary repre-

sentation of x0þx1þ


þxi
2n with the symbol N � 1 replacing

the Boolean 1, then the circuit U½0;N�1�;n will realize distribu-

tion ðx02n ; x12n ; . . . ; xN�1
2n Þ. In other words, to generate any

desired binary distribution ðx02n ; x12n ; . . . ; xN�1
2n Þ, we set the

input vector r0 to
x0
2n, the input vector r1 to the sum x0þx1

2n ; . . . ;

and the input vector rN�2 to the sum x0þx1þ...þxN�2
2n .

Theorem 10. An N-state UPG U½0;N�1�;n with inputs ri; 0 	 i 	
N � 2 can be constructed with a polynomial number of

switches OðnN�1Þ using either of the two recursive construc-
tions in Fig. 18, where the bits used in U½0;i�;n�1 are r0; r1; . . . ;

ri�1 and the bits used in U½i;N�1�;n�1 are ri; riþ1; . . . ; rN�2.

8 PARTIAL ORDERS

It is interesting to consider extending this work to states in a
partial order. Partial orders are orderings where two states
may not be comparable with the “greater than or equal to”
relation. For example, in the partial order of Fig. 19b, x11 is
greater than all other states and x00 is less than all other
states, but x01 and x10 are incomparable.

For partial orders, one natural generalization of max and
min are the _ (join) and ^ (meet) operators. The _ of states a
and b is the least upper bound on a and b while the ^ of
states a and b is the greatest lower bound on a and b. When

Fig. 17. Three-state UPG removed bit. Even though r0 and s0 were
important in controlling the cases of our algorithm, it turns out we can
remove it from the recursive construction and just append it at the end.

Fig. 18. N-state UPG. The N-state UPG is almost exactly the same as
the three-state UPG.

Fig. 16. Three-state UPG reduced. After reducing the exponential
UPG, we get two linear UPGs. One is an sp-circuit and uses two
stochastic switches. The other is non-sp and uses one stochastic
switch.
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parallel and series connections are generalized from max
and min to join and meet respectively, we find that we
cannot generate many distributions using series-parallel cir-
cuits. We demonstrate this for the partial order represented
by Fig. 19b, but the result extends to any partial order.

Theorem 11 (Partial Order Inexpressibility). For the lattice
in Fig. 19b, no distributions of the form v ¼ ð0; 1� p; p; 0Þ,
where 0 < p < 1, are realizable by building an sp circuit with
any switch set unless ð0; 1� p; p; 0Þ itself is in the switch set.

Proof. Assume that v is realizable by a series composition.
That is, v ¼ xy. Then we have the following expressions
for v in terms of x and y:

v00 ¼ x00 þ y00 � x00y00 þ x01y10 þ x10y01 (3)

v10 ¼ x10y11 þ x11y10 þ x10y10 (4)

v01 ¼ x01y11 þ x11y01 þ x01y01 (5)

v11 ¼ x11y11: (6)

Since v00 ¼ 0, we can conclude from (3) that we must
have x00 þ y00 � x00y00 ¼ 0, which implies that x00 ¼ 0
and y00 ¼ 0. Similarly, since v11 ¼ 0, we can conclude
from (6) that we must have x11 ¼ 0 or y11 ¼ 0.

Without loss of generality, suppose x11 ¼ 0. Plugging
into (4) and (5), we get

v10 ¼ x10y11 þ x10y10 ¼ x10ðy11 þ y10Þ
v01 ¼ x01y11 þ x01y01 ¼ x01ðy11 þ y01Þ:

But since v10 ¼ p > 0 and v01 ¼ 1� p > 0, we know that
x10 6¼ 0 and x01 6¼ 0.

Finally, recall that x11 ¼ 0 without loss of generality
and that v00 ¼ 0. Then v00 ¼ 0 ¼ x01y10 þ x10y01. Since
both x10 and x01 are not equal to zero, this must mean
that y10 ¼ 0 and y01 ¼ 0. Now, recall that we have already
concluded that y00 ¼ 0. Then we now know that y11 ¼ 1.
With this, we can simply plug the appropriate values for
y into equations (3-6) to conclude that x ¼ v, which
means that we can only realize v through a series compo-
sition if we already have access to v. A similar argument
will show the same result for a parallel composition. tu

9 APPLICATIONS

As alluded to in Section 1.5, the max-minmultivalued alpha-
bet is naturally suited for reasoning about timings and
dependencies. Switches represent events, and the states rep-
resent the discrete time when the event occurs. When two

switches x and y are composed to make the circuit z, we are
saying that for event z to occur, it depends on events x and y.
If event z requires both x and y to occur before it can occur,
then this can be represented by a parallel connection since
the time z occurs will be the maxðx; yÞ. If event z only needs
either x or y to occur, then this can be represented by a series
connection since the time z occurs will be theminðx; yÞ.

Such timing based computations also appear in neural
circuits. A rough description of how neurons work is that
incoming signals from previous neurons will release chemi-
cals that change the voltage potential of the neuron. If this
voltage potential exceeds a threshold level, then the neuron
will fire its own signal. Consider a network of neuronswhere
each neuron only has incoming signals from two other
neurons. Then, consider a neuron xwith incoming neurons y
and z. Neuron xwill fire when the incoming signals exceeds
a certain threshold potential. If the threshold of x is low, then
if it receives an incoming signal from either y or z, it will
exceed the threshold and neuron x will fire. Then the time
would be the minimum of y and z firing times. If the thresh-
old is high, we can imagine that neuron x will only fire if it
receives signals from both incoming neurons. The time
would be themaximumof y and z firing times.

10 CONCLUSION

In this paper, we studied probability generation in multi-
valued relay circuits. We proved a duality result for
these circuits and derived algorithms for generating any
rational probability distribution. We show that errors in
the designed circuits remain bounded regardless of the
circuit size. Finally, we constructed a universal probabil-
ity generator for mapping deterministic inputs to any
desired probability distributions and demonstrated an
impossibility result for partial orders. An interesting
direction is to extend this work to better understand
neural coding.
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