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We study the issue of polarization in society through a model of
opinion formation. We say an opinion formation process is polar-
izing if it results in increased divergence of opinions. Empirical
studies have shown that homophily, i.e., greater interaction be-
tween like-minded individuals, results in polarization. However,
we show that DeGroot’s well-known model of opinion formation
based on repeated averaging can never be polarizing, even if
individuals are arbitrarily homophilous. We generalize DeGroot’s
model to account for a phenomenon well known in social psychol-
ogy as biased assimilation: When presented with mixed or in-
conclusive evidence on a complex issue, individuals draw undue
support for their initial position, thereby arriving at a more ex-
treme opinion. We show that in a simple model of homophilous
networks, our biased opinion formation process results in polari-
zation if individuals are sufficiently biased. In other words, homo-
phily alone, without biased assimilation, is not sufficient to polarize
society. Quite interestingly, biased assimilation also provides a
framework to analyze the polarizing effect of Internet-based rec-
ommender systems that show us personalized content.

The issue of polarization in society has been extensively stud-
ied and vigorously debated in the academic literature as well

as the popular press over the last few decades. In particular, are
we as a society getting more polarized? If so, why, and how can
we fix it? Different empirical studies arrive at different answers
to this question depending on the context and the metric used to
measure polarization.
Evidence of polarization in politics has been found in the in-

creasingly partisan voting patterns of the members of Congress
(1, 2) and in the extreme policies adopted by candidates for
political office (3). McCarty et al. (4) claim via rigorous analysis
that America is polarized in terms of political attitudes and
beliefs. Phenomena such as segregation in urban residential
neighborhoods (5–7), the rising popularity of overtly partisan
television news networks (8, 9), and the readership and linking
patterns of blogs along partisan lines (10–13) can all be viewed as
further evidence of polarization. On the other hand, it has also
been argued on the basis of detailed surveys of public opinion
that society as a whole is not polarized, even though the media
and the politicians make it seem so (14, 15). We adopt the view
that polarization is not a property of a state of society; instead it
is a property of the dynamics through which individuals form
opinions. We say that opinion formation dynamics are polarizing
if they result in an increased divergence of opinions.
It has been argued using empirical studies that homophily, i.e.,

greater interaction between like-minded individuals, results in
polarization (12, 16, 17). This argument has been used to claim
that the rise of cable news, talk radio, and the Internet has
contributed to polarization: the increased diversity of informa-
tion sources coupled with the increased ability to narrowly tailor
them to one’s specific tastes (either manually or algorithmically
through, for example, recommender systems) has an echo-chamber
effect that ultimately results in increased polarization.
A rich body of work attempts to explain polarization through

variants of a well-known mathematical model of opinion for-
mation proposed by DeGroot (18). In DeGroot’s model, indi-
viduals are connected to each other in a social network. The
edges of the network have associated weights representing the

extent to which neighbors influence each other’s opinions. Indi-
viduals update their opinion as a weighted average of their current
opinion and that of their neighbors. Variants of this model (e.g.,
refs. 19–22) explain the empirically observed persistent disagree-
ment on many issues by, for example, introducing stubborn indi-
viduals (i.e., individuals with unchanging opinions) into the original
model. However, we show that repeated averaging of opinions,
which underlies these models, always results in opinions that are
less divergent compared with the initial opinions, even if indi-
viduals are arbitrarily homophilous. As a result, this entire body
of work appears to fall short of explaining polarization which is
generally perceived to mean an increased divergence of opinions,
not just persistent disagreement. In this paper, we seek a more
satisfactory model of opinion formation that (a) is informed by a
theory of how individuals actually form opinions and (b) produces
an increased divergence of opinions under intuitive conditions.
We base our model on a well-known phenomenon in social

psychology called biased assimilation, according to which indi-
viduals process new information in a biased manner whereby
they readily accept confirming evidence while critically examining
disconfirming evidence. Suppose that individuals with opposing
views on an issue are shown mixed or inconclusive evidence. In-
tuitively, exposure to such evidence would engender greater agree-
ment, or at least a moderation of views. However, in a seminal
paper, Lord et al. (23) showed that biased assimilation causes
individuals to arrive at more extreme opinions after being ex-
posed to identical, inconclusive evidence. This finding has been
reproduced in many different settings over the years (e.g., refs.
24–26). We use biased assimilation as the basis of our model of
opinion formation and show that in our model homophily alone,
without biased assimilation, is not sufficient to polarize society.
It has been argued (27) that biased assimilation can be

countered by surprising validators: Individuals are more likely to
carefully consider disconfirming evidence if it is presented by a
source that is otherwise similar to them. Centola (28) empirically
showed that individuals are much more likely to adopt health
behaviors when they are a part of more homophilous networks.
We show that a stylized model of surprising validators does in-
deed reduce polarization as we define it in this paper.
Finally, we analyze the polarizing effects of recommender

systems that are widely used on the Internet to make personalized
recommendations (e.g., search results, news articles, products) to
individuals. We analyze three recommender algorithms—Simple-
SALSA, SimplePPR, and SimpleICF—that are similar in spirit
to commonly used recommender algorithms. For a simple, nat-
ural model of the underlying user-item graph, and under reason-
able assumptions, we show that SimplePPR, which recommends
the item that is most relevant to a user based on a PageRank-like
(29) score, is always polarizing. On the other hand, SimpleSALSA
and SimpleICF, which first choose a random item liked by the user
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and recommend an item similar to that item, are polarizing only if
individuals are biased. Thus, biased assimilation also provides
a useful framework to understand whether recommender systems
contribute to polarization.

Model
Our opinion formation process unfolds over a social network rep-
resented by a connected weighted undirected graph G = (V, E, w).
The nodes in V represent individuals and the edges represent
friendships or relationships between them. Let jVj = n. An edge
(i, j) ∈ E is associated with a weight wij > 0 representing the
degree of influence i and j have on each other. Each individual i ∈ V
also has an associated weight wii ≥ 0 representing the degree to
which the individual weights his own opinions. We denote by N(i)
the set of neighbors of i; that is, N(i) := {j ∈ V: (i, j) ∈ E}.
An individual i has an opinion xi(t) ∈ [0, 1] at time step t = 0, 1,

2 . . .. The extreme opinions 0 and 1 represent opposing points
of view on an issue. So xi(t) can be interpreted as individual i’s
degree of support at time t for the position represented by 1 and
1 − xi(t) as the degree of support for the position represented by 0.
Let x(t) ∈ [0, 1]n denote the vector of opinions at time t. An
opinion formation process is a description of how individuals
update their opinions; i.e., for each individual i ∈ V, it defines
xi(t + 1) as a function of the vector of opinions, x(t), at time t.

Measuring Polarization. We view polarization as a property of an
opinion formation process instead of a property of a state of the
network. We characterize polarization as a verb as opposed to
a noun; i.e., we say that an opinion formation process is polar-
izing if it results in an increased divergence of opinions. One
could mathematically capture divergence of opinions in many
different ways. We measure divergence in terms of the network
disagreement index defined below.

Definition 1. Network Disagreement Index.Given a graph G = (V, E, w)
and a vector of opinions x ∈ [0, 1]n of individuals in V, the network
disagreement index η(G, x) is defined as

ηðG; xÞ :=
X
ði;jÞ∈E

wij
�
xi − xj

�2
: [1]

Consider an opinion formation process over a networkG = (V,
E, w) that transforms a set of initial opinions x ∈ [0, 1]n into a set
of opinions x′ ∈ [0, 1]n. Then, we say the process is polarizing if
η(G, x′) > η(G, x), and vice versa.
The network disagreement index (NDI) is similar to the notion

of social cost used by Bindel et al. (22). Each term wij(xi − xj)
2

can be viewed as the cost of disagreement imposed upon i and j.
This view that the social cost depends on the magnitude of the
difference of opinions along edges is consistent with theories in
social psychology according to which attitude conflicts in rela-
tionships are a source of psychological stress or instability (30, 31).
The NDI captures the phenomenon of issue radicalization, i.e.,
preexisting groups of individuals becoming progressively more
extreme. Admittedly, it does not entirely capture an aspect of
polarization called issue alignment (32) whereby individuals with
diverse opinions organize into ideologically coherent, but op-
posing factions. However, there is significant empirical evidence
(4, 27, 32) that issue radicalization is more prevalent compared
with issue alignment, and hence NDI captures the most salient
aspects of polarization. Many of our results hold for more gen-
eral measures of divergence, which we discuss in a later section.

DeGroot’s Repeated Averaging Process. In his seminal work on
opinion formation, DeGroot (18) proposed a process where at
each time step, individuals simultaneously update their opinion
to the weighted average of their neighbors’ and their own opinion
at the previous time step.

Definition 2. DeGroot’s Repeated Averaging Process. The opinion
of individual i at time t + 1, xi(t + 1), is given by

xiðt+ 1Þ= wiixiðtÞ+ siðtÞ
wii + di

; [2]

where siðtÞ :=
P

j∈NðiÞwijxjðtÞ is the weighted sum of the opinions of
i’s neighbors, and di :=

P
j∈NðiÞwij is i’s weighted degree.

Recall that xj(t) and 1 − xj(t) represent the degree of support for
extremes 1 and 0, respectively. Then, opinion update under
DeGroot’s process is equivalent to taking a weighted average of the
total support for 0 and that for 1. The weight that individual i places
on 1 (and on 0) is computed by summing the degrees of support of
i’s neighbors weighted by the influence of each neighbor on i.

Biased Opinion Formation Process. We generalize DeGroot’s pro-
cess to account for biased assimilation. Biased assimilation is a
well-known phenomenon in social psychology described by Lord
et al. (23, p. 2098) in their seminal paper as follows:

People who hold strong opinions on complex social issues are likely to
examine relevant empirical evidence in a biased manner. They are apt
to accept “confirming” evidence at face value while subjecting “dis-
confirming” evidence to critical evaluation, and as a result to draw
undue support for their initial positions from mixed or random
empirical findings.

Lord et al. (23) showed through experiments that biased as-
similation of mixed or inconclusive evidence does indeed result
in more extreme opinions.
To account for biased assimilation, we propose a biased opinion

formation process. Recall that xi(t) can be viewed as the degree
of support for the position represented by 1. Individuals weight
confirming evidence more heavily relative to disconfirming evi-
dence by updating their opinions as follows: Individual i weights
each neighbor j’s support for 1 [i.e., xj(t)] by an additional factor
ðxiðtÞÞbi , where bi ≥ 0 is a bias parameter. Therefore, xiðt+ 1Þ∝
ðxiðtÞÞbiwijxjðtÞ. Similarly, i weights j’s support for 0 [i.e., 1 − xj(t)]
by ð1− xiðtÞÞbi , and so ð1− xiðt+ 1ÞÞ∝ ð1− xiðtÞÞbiwijð1− xjðtÞÞ. In-
formally, bi represents the bias with which i assimilates his neigh-
bors’ opinions.

Illustrative Example. Consider a graph with two nodes, i and j,
connected by an edge with a weight wij. Then, according to the
biased opinion formation process, i’s opinion at time t + 1, xi(t + 1),
is given by

xiðt+ 1Þ= wiixiðtÞ+ ðxiðtÞÞbiwijxjðtÞ
wii + ðxiðtÞÞbiwijxjðtÞ+ ð1− xiðtÞÞbiwij

�
1− xjðtÞ

�:
More generally, the opinion update of individual i in the biased
opinion formation process is defined as shown below.

Definition 3. Biased Opinion Formation Process. Under the biased
opinion formation process, the opinion of individual i at time t + 1,
xi(t + 1), is given by

xiðt+ 1Þ= wiixiðtÞ+ ðxiðtÞÞbi siðtÞ
wii + ðxiðtÞÞbi siðtÞ+ ð1− xiðtÞÞbiðdi − siðtÞÞ

; [3]

where, as before, siðtÞ :=
P

j∈NðiÞwijxjðtÞ is the weighted sum of
the opinions of i’s neighbors, and di :=

P
j∈NðiÞwij is i’s weighted

degree. Observe that when bi = 0, [3] is identical to [2]; i.e.,
DeGroot’s process is a special case of our process and corresponds
to unbiased assimilation. More generally, biased assimilation can
be modeled by making i’s opinion update proportional to βi(xi(t))
si(t), where the bias function βi: [0, 1] → [0, 1] is nondecreasing.

Connection with Urn Models. Urn models are an elegant abstrac-
tion and have been used to analyze the properties of a wide
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variety of probabilistic processes. DeGroot’s process and our
biased opinion formation process have the following analogous
urn dynamics. Let xi(t) denote the fraction of RED balls in in-
dividual i’s urn at time t and 1 − xi(t) denote the corresponding
fraction of BLUE balls:

• Step 1 (common): At each time step, i chooses a neighbor j
with probability proportional to wij and inspects a ball cho-
sen uniformly at random from j’s urn. Note that i does not
remove the ball from j’s urn.

• Step 2 (DeGroot’s process): i adds a ball of the same color as
the inspected ball to his urn and discards a ball chosen uni-
formly at random from his urn.

• Step 2 (Biased opinion formation process with bi = 1): i also
inspects a ball chosen uniformly at random from his own
urn. If the colors of the two inspected balls match, i adds
a ball of the same color to his urn and discards a ball chosen
uniformly at random from his urn.

Biased Assimilation by a Single Agent in a Fixed Environment. Here
we demonstrate that our model of biased assimilation mathe-
matically reproduces the empirical findings of Lord et al. (23).
We analyze the change in opinion of a single individual as a
function of his bias parameter when he is exposed to opinions
from a fixed environment. The fixed environment represents
sources of information that influence the individual’s opinion,
but can be assumed to remain unaffected by the individual’s
opinion, such as the news media, the Internet, the organizations
that the individual is a part of, etc.
For this section, we denote by x(t) ∈ [0, 1] the individual’s

opinion at time t and by b ≥ 0 the individual’s bias parameter. Let
the individual’s weight on his own opinion be wii = w. Let s ∈ (0, 1)
denote the (time-invariant) weighted average of the opinions of
all sources in the individual’s environment. Then, from [3], the
individual’s opinion at time t + 1 is given by

xðt+ 1Þ= wxðtÞ+ ðxðtÞÞb s
w+ ðxðtÞÞb s+ ð1− xðtÞÞbð1− sÞ

: [4]

Given s ∈ (0, 1), and b ≠ 1, we define

x̂ðs; bÞ := s1=ð1−bÞ

s1=ð1−bÞ + ð1− sÞ1=ð1−bÞ
[5]

as the polarization threshold for the individual. We show that
when the individual is sufficiently biased (i.e., b > 1), the polar-
ization threshold x̂ is an unstable equilibrium; i.e., in equilibrium
the individual’s opinion goes to 1 or 0 depending on whether the
initial opinion was greater than or less than x̂. On the other hand,
when b < 1, x̂ is a stable equilibrium.

Theorem 1.
Fix t ≥ 0. Let x(t) ∈ (0, 1).

1. If b > 1,
(a) if xðtÞ> x̂, then x(t + 1) > x(t), and x(t) → 1 as t → ∞;
(b) if xðtÞ< x̂, then x(t + 1) < x(t), and x(t) → 0 as t → ∞;
(c) if xðtÞ= x̂, then for all t′ > t, xðt′Þ= x̂.

2. If b < 1,
(a) if xðtÞ> x̂, then x(t + 1) < x(t);
(b) if xðtÞ< x̂, then x(t + 1) > x(t);
(c) xðtÞ→ x̂ as t → ∞.

The opinion x(t) can be interpreted as the individual’s degree
of support for the extreme represented by 1. So, the above the-
orem shows that when the individual is sufficiently biased (i.e.,
b > 1), exposure to the environment pushes him away from the
threshold x̂ (unless xð0Þ= x̂), and he holds an extreme opinion
(x(t) = 0 or x(t) = 1) in equilibrium. Thus, x̂ is an unstable

equilibrium. This mathematically captures the biased assimilation
behavior observed empirically. On the other hand, if the individual
has low bias (i.e., b < 1), then he gravitates toward the polarization
threshold x̂ over time. Thus, x̂ is a stable equilibrium in this case.
The behavior of the individual when b = 1 is a limiting case of the
two cases proved in the theorem; as b → 1, limt→∞ xðtÞ= x̂, but x̂
goes to 1, 12, or 0 depending on whether s is greater than, equal to,
or less than 1

2. When the individual is connected to other individ-
uals in a social network, we show below that the biased opinion
formation process produces polarization even when b = 1.

DeGroot’s Process Is Not Polarizing
It is easy to see that if DeGroot’s process was asynchronous, i.e.,
individuals update their opinions one at a time, each opinion
update can only lower the NDI. However, here we show that each
opinion update can only lower the NDI even when individuals
update opinions simultaneously. As a result, the repeated aver-
aging process is depolarizing.

Theorem 2. Consider an arbitrary connected, weighted, undirected
graph G = (V, E, w). Let x ∈ [0, 1]n be an arbitrary vector of
opinions of nodes in G at time t ≥ 0. Assume that for all i ∈ V, bi = 0.
Then, η(G, x(t + 1)) ≤ η(G, x(t)); i.e., the network disagreement
index at time t + 1 is no more than that at time t.
Our result holds for arbitrary weights wij and an arbitrary

vector of opinions x ∈ [0, 1]n, i.e., when the underlying network
is arbitrarily homophilous. Moreover, it holds for a number of
variants of DeGroot’s model that have been proposed to explain
the empirically observed lack of consensus on many issues. We
defer that discussion to a later section of the paper.

Polarization Due to Biased Assimilation
In this section we illustrate using a simple model of networks
with homophily that the biased opinion formation process may
result in polarization, persistent disagreement, or consensus de-
pending on how biased the individuals are. Wemodel homophilous
networks using a deterministic variant of multitype random net-
works (33). Multitype random networks are a generalization of
Erdös–Rényi random graphs. Nodes in V are partitioned into
types, say, τ1, τ2, . . . , τk. The network is parameterized by a vector
(n1, . . . , nk) where ni is the number of nodes of type τi, and a
symmetric matrix P ∈ [0, 1]k×k, where Pij is the probability that
there exists an undirected edge between a node of type τi and
another of type τj. The class of multitype random networks where
Pii > Pij for all i, j is called the islands model and is used to model
homophily (because an individual is more likely to be connected
with individuals of the same type). We analyze the biased opinion
formation process over a deterministic variant of the islands
model, which we call a two-island network.

Definition 4.Given integers n1, n2 ≥ 0 and real numbers ps, pd ∈ (0, 1),
a (n1, n2, ps, pd)-two-island network is a weighted undirected graph
G = (V1, V2, E, w), where

• jV1j = n1, jV2j = n2, and V1 ∩ V2 = Ø.
• Each node i ∈ V1 has n1ps neighbors in V1 and n2pd neighbors

in V2.
• Each node i ∈ V2 has n2ps neighbors in V2 and n1pd neighbors

in V1.
†

• ps > pd.

We define the degree of homophily as follows.

Definition 5. Let G = (V1, V2, E, w) be a (n1, n2, ps, pd)-two-island
network. Then the degree of homophily in G, hG, is defined to be the
ratio ps/pd.

†For clarity of exposition, we assume that the quantities n1ps ;n2ps ;n1pd and n2pd are
all integers.

Dandekar et al. PNAS Early Edition | 3 of 6

SO
CI
A
L
SC

IE
N
CE

S
CO

M
PU

TE
R
SC

IE
N
CE

S



Informally, a high value of hG implies that nodes in V are
much more likely to form edges to other nodes of their own type,
thereby exhibiting a high degree of homophily.

Theorem 3. Let G = (V1, V2, E, w) be a (n, n, ps, pd)-two-island
network. For all i ∈ V = V1 ∪ V2, let wii = 0. For all (i, j) ∈ E, let
wij = 1. Assume for all i ∈ V1, xi(0) = x0, where 1

2< x0 < 1. Assume
for all i ∈ V2, xi(0) = 1 − x0. Assume for all i ∈ V, the bias parameter
bi = b > 0. Then,

1. (Polarization) If b ≥ 1, ∀i ∈ V1, limt→∞ xi(t) = 1, and ∀i ∈ V2,
limt→∞ xi(t) = 0.

2. (Persistent disagreement) If 1> b≥ 2
hG + 1, then there exists a

unique x̂∈
�
1
2; 1

�
such that ∀i ∈ V1, limt→∞xiðtÞ= x̂, and ∀i ∈

V2, limt→∞ xiðtÞ= 1− x̂.
3. (Consensus) If b< 2

hG + 1, then for all i ∈ V, limt→∞ xiðtÞ= 1
2.

Let us analyze the implications of this theorem. Let η∞ be
the NDI at equilibrium; i.e., η(G, x(t)) → η∞ as t → ∞. Then, the
above result implies that when b≥ 1, η∞> η(G, x(0)); i.e., the biased
opinion formation process is polarizing. On the other hand, when
individuals are moderately biased [i.e., 1 > b ≥ 2/(hG + 1)], η∞ >
η(G, x(0)) if and only if x0 < x̂; so the opinion formation process
may not be polarizing, but it does not produce consensus either.
Finally, when individuals have low bias [i.e., b< 2/(hG+ 1)], η∞= 0.
So, the opinion formation process is depolarizing. This illustrates
the importance of the bias parameter in causing polarization. Also,
observe that b = 1 corresponds to the urn dynamic described ear-
lier; hence the above result shows that that the urn dynamic causes
polarization for an arbitrarily small degree of homophily.

Nonhomogeneous Opinions. Theorem 3 holds in the restrictive
setting where initial opinions in each island are homogeneous.
However, the biased opinion formation process produces polar-
ization even when initial opinions in each island are not homo-
geneous. If b ≥ 1, and the initial opinions of individuals in the two
islands are sufficiently far apart relative to the degree of homo-
phily hG, the equilibrium opinions of individuals in V1 go to 1 and
those in V2 go to 0 (SI Appendix, Theorem 4.1). Admittedly, in
this case, the NDI in equilibrium might be lower than the initial
NDI depending on the initial distribution of opinions. However,
let us consider another natural measure of opinion divergence,
namely, the global disagreement index (GDI).

Definition 6. Global Disagreement Index. Given a vector of opinions
x ∈ [0, 1]n of individuals in V, the global disagreement index γ(x) is
defined as

γðxÞ :=
X
i<j

�
xi − xj

�2
: [6]

The GDI is maximized when half the individuals have opinion
0 and other half 1. So, regardless of the initial distribution of
opinions, the biased opinion formation process produces polariza-
tion even in this case, if opinion divergence is measured using GDI.

Variants of DeGroot’s Process
Our result about DeGroot’s process (Theorem 2) in fact holds
for a number of variants that are all based on repeated averaging
of opinions. Here we discuss some of the variants.

Stubborn Individuals. One variant (34) of DeGroot’s model
attempts to explain the observed lack of consensus on many issues
by allowing some nodes to have an infinite self-weight w_ii. Such
nodes are called stubborn individuals. Because our result holds for
arbitrary weights, this variant is also depolarizing according to
our definition.

Surprising Validators. It has been argued (27) that biased assimila-
tion can be countered by surprising validators: Individuals aremore

likely to carefully consider disconfirming evidence if it is presented
by a source that is otherwise similar to them. An opinion formation
process with surprising validators can be viewed as individual i
adopting an opinion held by j, if i finds j to be similar to him. This
process can be interpreted as the following natural urn dynamic: At
each time step, i chooses a neighbor j with probability proportional
to wij and inspects a ball chosen uniformly at random from j’s urn. i
also inspects a ball uniformly at random from his own urn. If the
colors of the two inspected balls match, i inspects another ball
chosen uniformly at random from j’s urn, adds a ball of the same
color to his urn, and discards a ball chosen uniformly at random
from his urn.
Observe that conditioned on the colors of the two inspected

balls matching, the probability that i adds a RED ball to his urn
is xj(t), which is identical to the corresponding (unconditional)
probability in DeGroot’s process. In other words, this process is
a conditional version of DeGroot’s process. Mathematically, the
opinion update in this process is given by

xiðt+ 1Þ :=wiixiðtÞ+
P

j∈NðiÞwijpijðtÞ xjðtÞ
wii +

P
j∈NðiÞwijpijðtÞ ; [7]

where the additional term pijðtÞ := ðxiðtÞÞbi xjðtÞ+ ð1− xiðtÞÞbið1−
xjðtÞÞ corresponds to the probability in the urn model that i finds
j to be similar to him. Observe that if we define w′ijðtÞ :=wijpijðtÞ
[7] is identical to [2], except that the weights may vary with time.
Therefore, like DeGroot’s process, each update in the opinion
formation process with surprising validators can only lower the
NDI, regardless of the value of the bias parameter bi. This styl-
ized model validates the claim (27, 28) that biased assimilation
can be countered with surprising validators.

Flocking Model. The flocking model is a well-known model for
decentralized consensus (35) based on repeated averaging. Un-
der this model, at each time step t ≥ 0, an arbitrary set S(t) ⊆ V of
individuals simultaneously updates their opinions to be closer to
the average opinion of the set.

Definition 7. Flocking Process. Let e ∈ [0, 1]. For t ≥ 0, let S(t) ⊆ V
be an arbitrary set of individuals such that jS(t)j ≥ 2. Let sðtÞ :=
1

jSðtÞj
P

i∈SðtÞxiðtÞ be the average opinions of individuals in S(t). Under
the flocking process, the opinion of individual i ∈ V at time t + 1,
xi(t + 1), is given by

xiðt+ 1Þ=
� ð1− eÞ xiðtÞ+ esðtÞ; if   i∈ SðtÞ

xiðtÞ; otherwise:
[8]

Observe that in the flocking process, there is no notion of an
underlying network. Therefore, the GDI (Definition 6) is a nat-
ural measure of opinion divergence under this process. Next we
show that each opinion update in the flocking process can only
lower the GDI.

Theorem 4. Let x ∈ [0, 1]n be an arbitrary vector of opinions of
nodes in V at time t ≥ 0. Let x(t + 1) ∈ [0, 1]n be the vector of
opinions at time t + 1 after one step of the flocking process. Then,
γ(x(t + 1)) ≤ γ(x(t)); i.e., the GDI at time t + 1 is no more than that
at time t.
A generalization of the GDI is the following:

P
i<jhðjxi − xjjÞ,

where h is an arbitrary convex function. The flocking process
has the property that the vector x(t + 1) is majorized by x(t).
Therefore, as noted in the proof of Theorem 4, each opinion up-
date of the flocking process is depolarizing under this definition
or, more generally, when divergence is defined by any symmetric
convex function of x.
Observe that it is possible to assign weights wij such that a single

opinion update in DeGroot’s process increases the GDI (or any
symmetric convex function of x) because the latter is indepen-
dent of the weights. However, DeGroot’s process converges to
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consensus under fairly general conditions (18). Thus, under those
conditions, DeGroot’s process is depolarizing in equilibrium.

Recommender Systems and Polarization
Recommender systems are widely used on the Internet to present
personalized information (e.g., search results, news articles,
products) to individuals. This personalization is typically done by
algorithms that use an individual’s past behavior (e.g., history of
browsing and purchases) and that of other individuals that are
similar in some way to that individual, to discover items of pos-
sible interest to the user. It has been argued (17) that this per-
sonalization has an echo-chamber effect where individuals are
exposed only to information they agree with, and this ultimately
leads to increased polarization. Here we investigate this question:
Do recommender systems have a polarizing effect?
We consider the following simple model: Let G = (V1, V2, E) be

an unweighted undirected bipartite graph. Nodes in V1 represent
individuals. Nodes in V2 represent items. The items could be books,
webpages, news articles, products, etc. For concreteness, we refer
to nodes in V2 as books. For a node i ∈ V1 and a node j ∈ V2, an
edge (i, j) ∈ E represents ownership, i.e., individual i owns book j.
For our purpose, we define a recommender algorithm as below.

Definition 8. A recommender algorithm takes as input a bipartite
graph G = (V1, V2, E) and a node i ∈ V1 and outputs a node j ∈ V2.
Thus, given a graph representing which users own which books

and a specific user i, a recommender algorithm outputs a single
book j to be recommended to i. We analyze three simple rec-
ommender algorithms—SimpleSALSA (Algorithm 1), SimpleICF
(Algorithm 2), and SimplePPR (Algorithm 3)—that are similar in
spirit to three well-known recommender algorithms from the lit-
erature: SALSA (36), Personalized PageRank (29), and item-
based collaborative filtering (37), respectively. All three algorithms
are based on performing random walks on the graph G. Infor-
mally speaking, SimpleSALSA and SimpleICF first choose a
random item liked by user i and recommend an item similar to
that item, whereas SimplePPR recommends the item that is most
relevant to user i on the basis of a PageRank-like score.
We assume that i can buy a book only if it is recommended to

him. However, he may choose to reject a recommendation, i.e.,
to not buy a recommended book. Therefore, i buying a book j
requires two steps: The recommender algorithm must recom-
mend j to i, and then i must accept the recommendation.
Because we are interested in analyzing the polarizing effects of

recommender systems, we assume that each book in V2 is labeled
either “RED” or “BLUE”. These labels are purely for the pur-
pose of analysis; the algorithms we study are agnostic to these
labels. For each individual i ∈ V1, let xi ∈ [0, 1] be the fraction of
RED books owned by i and 1 − xi be that of BLUE books.
Individuals may be biased or unbiased, as we define below.

Definition 9. Consider a book recommended to an individual i ∈ V1.
We say that i is unbiased if i accepts the recommendation with the
same probability independent of whether the book is RED or
BLUE. We say that i is biased if

1. i accepts the recommendation of a RED book with probability xi
and rejects it with probability 1 − xi and

2. i accepts the recommendation of a BLUE book with probability
1 − xi and rejects it with probability xi.

Observe that the above definition of an individual i being biased
corresponds to the urn dynamic described earlier with bi = 1.
For an individual i, the fraction of RED books i owns, xi, can

be viewed as i’s opinion in the interval [0, 1], and so a recom-
mender algorithm can be viewed as an opinion formation pro-
cess. The opinion xi remains unchanged if i rejects a recommen-
dation. However, if i accepts a recommendation, xi increases or
decreases depending on whether the recommended book was
RED or BLUE. Thus, we are interested in the probability that a
recommendation was for a RED (or BLUE) book given that
i accepted the recommendation. The above probability deter-
mines whether a recommender algorithm is polarizing or not.

Definition 10. Consider a recommender algorithm and an individual
i ∈ V1 that accepts the algorithm’s recommendation. The algorithm
is polarizing with respect to i if

1. when xi > 1
2 , the probability that the recommended book was RED

is greater than xi, and
2. when xi < 1

2 , the probability that the recommended book was RED
is less than xi.

Informally speaking, a recommender algorithm is polarizing if
it makes a “RED individual” more RED and a “BLUE individ-
ual” more BLUE. To analyze the recommender algorithms, we
assume a generative model for G, which we describe next.

Generative Model for G. Let the number of individuals, jV1j =m > 0.
Let the number of books, jV2j = 2n, with n > 0 books of each
color. We assume that m = f(n); and limn→∞ f(n) = ∞. For in-
dividual i ∈ V1, we draw xi independently from a distribution over
[0, 1] with a probability density function g(·). We assume that g is
symmetric about 1

2; i.e., for all y ∈ [0, 1], g(y) = g(1 − y). This
implies that for all i ∈ V1, E½xi�= 1

2. We assume that the variance
of the distribution is strictly positive; i.e., Var(xi) > 0. For an
individual i and a RED book j, there exists an edge (i, j) ∈ E
independently with probability xik

n , where 0 < k < n. For an in-
dividual i and a BLUE book j, there exists an edge (i, j) ∈ E
independently with probability ð1− xiÞk

n . So, in expectation, each
individual i owns k books, and xi fraction of them are RED.
For two books j, j′ ∈ V2, letMjj′ := jNðjÞ∩Nðj′Þj be the number

of individuals in V1 that are neighbors of both j and j′ in G. For
any two nodes i, j ∈ V, let P½i ��!ℓ j� be the probability that a ℓ-step
random walk over G starting at i ends at j. For a node i ∈ V1 and
a node j ∈ V2, let Zij be the indicator variable for edge (i, j); i.e.,
Zij = 1 if (i, j) ∈ E, and Zij = 0 otherwise.

Analysis.Next we prove our results about the polarizing effects of
each of the three algorithms. Our results rely on a technical
lemma, stated in SI Appendix, Lemma 6.1, which invokes the
Strong law of large numbers to show that random quantities such
as the number of neighbors of a user i or of a book j in the graph
G all take their expected values with probability 1 as n→∞. First
we show that SimplePPR (Algorithm 3) is polarizing with respect
to i even if i is unbiased.

Theorem 5. Fix a user i ∈ V1. In the limit as n → ∞ and as T → ∞,
SimplePPR is polarizing with respect to i.
Next we show that SimpleSALSA (Algorithm 1) and Sim-

pleICF (Algorithm 2) are polarizing only if i is biased.

Theorem 6. Fix a user i ∈ V1. In the limit as n → ∞,

Algorithm 1. SimpleSALSA

Input: G = (V1, V2, E), node i ∈ V1.
1: Perform a three-step random walk on G starting at i.
2: Let the random walk end at node j ∈ V2.
Output: j.

Algorithm 2. SimpleICF

Input: G = (V1, V2, E), node i ∈ V1.
Parameter: A large positive integer T.
1: Choose a neighbor k of i uniformly at random.
2: Perform T two-step random walks on G starting at k.
3: For each node j ∈ V2, let count (j) be the number of random walks

that end at node j.
4: Let j*:= arg maxj count (j).
Output: j*.
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1. SimpleSALSA is polarizing with respect to i if and only if i
is biased.

2. In the limit as T → ∞, SimpleICF is polarizing with respect to i if
and only if i is biased.

Both SimpleICF and SimpleSALSA first choose a random
book owned by i: They choose a RED book with probability xi
and a BLUE book with probability 1 − xi. This initial random
choice ensures that recommendations are sufficiently diverse;
i.e., the book eventually recommended by these algorithms is
RED with probability at most xi when xi > 1

2. Recall that our
definition of a biased individual in this section corresponds to
b = 1. However, as we point out in the proof of Theorem 6, both
algorithms are polarizing for all b ≥ 1.
By contrast, the reason why SimplePPR is always polarizing is

because the large number of three-step random walks serves to
amplify user i’s initial preference: If xi > 1

2, SimplePPR recom-
mends a RED book is probability 1, and vice versa. Consequently,
as we point out in the proof, Theorem 5 holds for all b ≥ 0.
Analyzing the polarizing effect of recommender algorithms

under a setting where the graph G evolves over time is an in-
teresting question that we leave for future work.

Concluding Remarks
In this paper we attempted to explain polarization in society through
a model of opinion formation. We showed that DeGroot-like

repeated averaging processes can never be polarizing, even if indi-
viduals are arbitrarily homophilous. We generalized DeGroot’s
repeated averaging model to account for biased assimilation. We
showed that in a two-island network, our biased opinion formation
process results in polarization when individuals are sufficiently bi-
ased. In other words, homophily alone, without biased assimilation,
is not sufficient to polarize society. We also used biased assimilation
to provide insight into the polarizing effects of three recommender
algorithms. We showed that SimplePPR, which recommends the
item that is most relevant to a user on the basis of a PageRank-like
(29) score, is always polarizing. The other two algorithms, which first
choose a random item liked by the user and recommend an item
similar to that item, are polarizing only if individuals are biased.
Our analysis raises a number of questions that we view as

promising directions for further research. For example, are rec-
ommender algorithms that produce more relevant recommenda-
tions necessarily more polarizing? For certain applications (e.g.,
ecommerce), polarizing effects may not be an overriding concern.
On the other hand, for online social systems designed expressly to
facilitate collective decision making regarding complex societal
issues, polarization might be a dominant concern. In the case of
recommender algorithms for news articles, blogs, etc., there may
well be a trade-off between relevance and polarizing effects. An
understanding of polarization, its causes, and associated trade-offs
is important for designing Internet-based socioeconomic systems.
As a final note, complete proofs of all theorems are presented

in SI Appendix.*
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We provide supplemental information for the article “Biased Assimilation, Homophily, and the
Dynamics of Polarization” submitted to Proceedings of the National Academy of Sciences. This
document contains proofs of the theorems stated in the paper. Additionally, we state and prove
a less restrictive version of Theorem 3 showing that in two-island networks with non-homogeneous
opinions, if the initial opinions are sufficiently far apart and if b ≥ 1, the biased opinion formation
process produces polarization.

1 Proof of Theorem 1

Recall that

x(t+ 1) :=
wx(t) + (x(t))bs

w + (x(t))bs+ (1− x(t))b(1− s)
Equivalently,

x(t+ 1)
1− x(t+ 1)

=
wx(t) + (x(t))bs

w(1− x(t)) + (1− x(t))b(1− s)
=

w + (x(t))b−1s

w + (1− x(t))b−1(1− s)
x(t)

1− x(t)
(1.1)

First we will show that if x(t) = x̂, then for all t′ > t, x(t′) = x̂.

Lemma 1.1. Assume b 6= 1. Fix t ≥ 0. Let x(t) = x̂. Then for all t′ > t, x(t′) = x̂.

Proof. To prove the lemma, it suffices to show that x(t+ 1) = x(t) = x̂. Recall that

x̂ :=
s1/(1−b)

s1/(1−b) + (1− s)1/(1−b)

Or equivalently, (
x̂

1− x̂

)1−b
=

s

1− s

This implies that when x(t) = x̂, x(t)b−1s = (1− x(t))b−1(1− s). Substituting this in (1.1), we get
that

x(t+ 1)
1− x(t+ 1)

=
x(t)

1− x(t)

Or equivalently, x(t+ 1) = x(t).

Next we will show that when b > 1, x̂ is an unstable equilibrium.

Lemma 1.2. Let b > 1. Fix t ≥ 0.

1. If x(t) > x̂, then x(t+ 1) > x(t).

2. If x(t) < x̂, then x(t+ 1) < x(t).

Proof. Again, recall that (
x̂

1− x̂

)1−b
=

s

1− s
Therefore, if x(t) > x̂, it implies that

x(t)
1− x(t)

>
x̂

1− x̂
⇒
(

x(t)
1− x(t)

)1−b
<

(
x̂

1− x̂

)1−b
=

s

1− s
(since b > 1)
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Or equivalently, (x(t))b−1s > (1− x(t))b−1(1− s). Substituting this in (1.1), we get that

x(t+ 1)
1− x(t+ 1)

>
x(t)

1− x(t)

Or equivalently, x(t+ 1) > x(t).
By a similar argument, if x(t) < x̂, then(x(t))b−1s < (1 − x(t))b−1(1 − s). Again, substituting

this in (1.1), we get that
x(t+ 1)

1− x(t+ 1)
<

x(t)
1− x(t)

Or equivalently, x(t+ 1) < x(t).

Next we will show that when b > 1, either limt→∞ x(t) = 1 or limt→∞ x(t) = 0.

Lemma 1.3. Let b > 1. Fix t ≥ 0.

1. If x(t) > x̂, then limt→∞ x(t) = 1.

2. If x(t) < x̂, then limt→∞ x(t) = 0.

Proof. For the proof, we will assume that x(t) > x̂ and show that limt→∞ x(t) = 1. The case when
x(t) < x̂ can be argued in an analogous way.

By definition, we know that for all t ≥ 0, x(t) ∈ [0, 1]. Further, from Lemma 1.2, we know
that the sequence {x(t′)t′≥t} is strictly increasing. Since the sequence is strictly increasing and
bounded, it must converge either to 1 or to some value in the interval [x(t), 1). Consider the
function g : [0, 1]→ R defined as

g(y) :=
w + ybs

w + ybs+ (1− y)b(1− s)
− y

Observe that for all t ≥ 0, x(t+ 1)− x(t) = g(x(t)). Therefore,

(a) for all y ∈ [x(t), 1), g(y) > 0 (since, by Lemma 1.2, the sequence {x(t′)t′→t} is strictly increas-
ing), and

(b) g(1) = 0.

For the purpose of contradiction, assume that limt→∞ x(t) = a, where x(t) ≤ a < 1. This implies,
for every ε > 0, there exists a t(ε) such that for all t′ ≥ t(ε), x(t′ + 1) − x(t′) < ε, or equivalently,
that for all t′ ≥ t(ε), g(x(t′)) < ε.

Let miny∈[x(t),a] g(y) = c. It implies for all y ∈ [x(t), a], g(y) ≥ c. From (a), it follows that c > 0.
Setting ε = c, our analysis implies the following two properties of g: (1) for all t ≥ 0, g(x(t)) ≥ c,
and (2) for all t′ ≥ t(ε), g(x(t′)) < c, which contradict each other. This completes the proof by
contradiction.

Using a similar argument we can show that when b < 1, x̂ is a stable equilibrium.

Lemma 1.4. Let b < 1. Fix t ≥ 0.

1. If x(t) > x̂, then x(t+ 1) < x(t).

2. If x(t) < x̂, then x(t+ 1) > x(t).

Lemma 1.5. Let b < 1. Then, limt→∞ x(t) = x̂.
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2 Proof of Theorem 2

Recall that since bi = 0, the opinion of node i at time t+ 1 is given by

xi(t+ 1) =
wiixi(t) +

∑
j∈N(i)wijxj(t)

wii + di
(2.1)

where recall that di :=
∑

j∈N(i)wij is the weighted degree of node i. Let LG be the weighted
laplacian matrix of G. Recall that LG is given by

(LG)ij =


di, if i = j

−wij , if (i, j) ∈ E
0, otherwise

Now consider the vector LGx(t). The ith entry of the vector is given by

(LGx(t))i = dixi(t)−
∑
j∈N(i)

wijxj(t) = dixi(t) + wiixi(t)−

wiixi(t) +
∑
j∈N(i)

wijxj(t)


= (di + wii)(xi(t)− xi(t+ 1)) (from (2.1))

Equivalently, in matrix notation,

x(t+ 1) = (I −DLG)x(t) (2.2)

where, D is a diagonal matrix such that Dii = 1/(di +wii). Note that since G is connected, di > 0,
and therefore Dii is finite. Consider the difference η(G,x(t + 1)) − η(G,x(t)). Observe that for a
vector y ∈ [0, 1]n, η(G,y) = y>LGy. Therefore, we have that

η(G,x(t+ 1))− η(G,x(t)) = (x(t+ 1))>LG(x(t+ 1))− (x(t))>LGx(t)

= (x(t))>(I −DLG)>LG(I −DLG)x(t)− (x(t))>LGx(t) (from (2.2))

= (x(t))> ((LG − LGDLG)(I −DLG)− LG) x(t) (since LG is symmetric)

= (x(t))> (LG − LGDLG − LGDLG − LGDLGDLG − LG) x(t)

= (x(t))> (LGDLGDLG − 2LGDLG) x(t)

= (x(t))>L>GD
1/2((D1/2LGD

1/2 − 2I))D1/2LGx(t) (since LG is symmetric)

= y>(D1/2LGD
1/2 − 2I)y (where y := D1/2LGx(t))

Thus, in order to show that η(G,x(t + 1)) − η(G,x(t)) ≤ 0, it suffices to show that for all vectors
y ∈ Rn, y>D1/2LGD

1/2y ≤ 2||y||22. We prove this as Lemma 2.1.

Lemma 2.1. Consider an arbitrary weighted undirected graph G = (V,E,w) over n nodes. Let
LG be the weighted laplacian matrix of G. Let D be an n × n diagonal matrix such that for i =
1, . . . , n, Dii = 1/(di +wii), where di =

∑
j∈N(i)wij is the weighted degree of i in G. Let y ∈ Rn be

an arbitrary vector. Then, y>D1/2LGD
1/2y ≤ 2||y||22.

Proof. For i = 1, . . . , n, let ri := di + wii. Let P := D1/2LGD
1/2. Then,

Pij =


di
ri
, i = j

−wij√
rirj

, (i, j) ∈ E
0, otherwise
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Then, we have that

y>Py =
∑
i,j

Pijyiyj =
n∑
i=1

Piiy
2
i + 2

∑
(i,j)∈E

Pijyiyj =
∑
i

di
ri
y2
i − 2

∑
(i,j)∈E

wij√
rirj

yiyj

=
∑
i

 1
ri
y2
i

∑
j∈N(i)

wij

− 2
∑

(i,j)∈E

wij√
rirj

yiyj

=
∑

(i,j)∈E

wij

(
y2
i

ri
+
y2
j

rj

)
− 2

∑
(i,j)∈E

wij√
rirj

yiyj

=
∑

(i,j)∈E

wij

(
yi√
ri
− yj√

rj

)2

= −
∑

(i,j)∈E

wij

(
yi√
ri

+
yj√
rj

)2

+ 2
∑
i

di
ri
y2
i

≤ −
∑

(i,j)∈E

wij

(
yi√
ri

+
yj√
rj

)2

+ 2
∑
i

y2
i (since di ≤ ri)

≤ 2||y||22

3 Proof of Theorem 3

To prove the theorem, we begin by making three simple observations that hold for all b ≥ 0. The
first observation follows directly from the symmetry of nodes in each set V1 and V2.

Lemma 3.1. Consider nodes i, j ∈ V such that either both i, j ∈ V1 or both i, j ∈ V2. Then for all
t ≥ 0, xi(t) = xj(t).

The next observation allows us to focus on only analyzing the equilibrium opinion of nodes in
V1.

Lemma 3.2. Consider a node i ∈ V1 and a node j ∈ V2. Then, for all t ≥ 0, xi(t) = 1− xj(t).

Proof of Lemma 3.2. By induction.
Induction hypothesis: Assume that the statement holds for some t ≥ 0.
Base case: The statement holds for t = 0 by assumption in the theorem statement.
We will now show that the statement holds for t+ 1.

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
si(t)

di − si(t)
(3.1)

where di = n(ps + pd) and, by Lemma 3.1, si(t) = n(psxi(t) + pdxj(t)). On the other hand,

xj(t+ 1)
1− xj(t+ 1)

=
(xj(t))b

(1− xj(t))b
sj(t)

dj − sj(t)
(3.2)
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where sj(t) = n(psxj(t) + pdxi(t)), and dj = n(ps + pd) = di. By the induction hypothesis, we know
that xi(t) = 1− xj(t). It follows that Si(t) = di − sj(t). Substituting this into (3.1), we get

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
si(t)

di − si(t)
=

(1− xj(t))b

(xj(t))b
dj − sj(t)
sj(t)

=
1− xj(t+ 1)
xj(t+ 1)

where the last equality follows from (3.2). It follows that xi(t+ 1) = 1− xj(t+ 1).
This completes the inductive proof.

Lemma 3.2 implies that if we prove the theorem statement for nodes in V1, we get the proof for
nodes in V2 for free. So, in the rest of the proof, we only make statements about nodes in V1. The
third observation lower bounds the opinions of nodes in V1.

Lemma 3.3. Consider a node i ∈ V1. For all t ≥ 0, xi(t) ∈ [12 , 1].

Proof of Lemma 3.3. It is easy to see that for all t ≥ 0, xi(t) ≤ 1. We will prove that xi(t) ≥ 1
2 by

induction over t.
Base case: The statement holds for t = 0 by assumption in the theorem statement.
Induction hypothesis: Assume that the lemma statement holds for some t ≥ 0, i.e., assume that

xi(t) ≥ 1
2 for some t ≥ 0.

We will show that the lemma statement holds for t+ 1.

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
Si(t)

di − si(t)

≥ (xi(t))b

(1− xi(t))b
(since si(t) > di − si(t))

≥ 1 (since xi(t) ≥
1
2

by the induction hypothesis, and b ≥ 0)

This implies xi(t+ 1) ≥ 1
2 , completing the inductive proof.

Recall that i’s opinion at time t+ 1 is given by

xi(t+ 1) =
(xi(t))bsi(t)

(xi(t))bsi(t) + (1− xi(t))b(di − si(t))

where si(t) = n(psxi(t) + pd(1− xi(t))), and di = n(ps + pd). Now consider the equation

xi(t+ 1) = xi(t) (3.3)

We will show that if b ≥ 1 or b < 2
hG+1 , (3.3) has no solution in (1

2 , 1), whereas if 1 > b ≥ 2
hG+1 ,

there exists a unique solution to (3.3) in (1
2 , 1).

Lemma 3.4. Consider a node i ∈ V1. Fix t ≥ 0.

(a) If b ≥ 1, for every xi(t) ∈ (1
2 , 1), xi(t+ 1) > xi(t).

(b) If 1 > b ≥ 2
hG+1 , there exists a unique solution, say x̂, to Eq.(3.3) in (1

2 , 1).

(c) If b < 2
hG+1 , for every xi(t) ∈ (1

2 , 1), xi(t+ 1) < xi(t).
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Proof of Lemma 3.4. Consider the function f : [0, 1]→ R defined as

f(y; b) :=


1, y ∈ [0, 1], b = 1
0, y ∈ [0, 1], b = 2

2
b − 1, y = 1

2 , b > 0
(y)2−b−(1−y)2−b

y(1−y)1−b−y1−b(1−y) , otherwise

(3.4)

We will first prove a few properties of f and then use those properties to prove Lemma 3.4.

Proposition 3.1. 1. For all b > 0, f is continuous over [0, 1].

2. If 0 < b < 1, f is strictly increasing over [12 , 1].

3. If b ≥ 1, for all y ∈ [0, 1), f(y; b) ≤ 1.

Proof. 1. Observe that f is continuous when b = 1 or b = 2. So, we only need to show that
f is continuous at y = 1

2 when b 6= 1 and b 6= 2. Let p(y; b) := (y)2−b − (1 − y)2−b and
q(y; b) := y(1 − y)1−b − y1−b(1 − y). Observe that when b 6= 1 and b 6= 2, both p and q are
differentiable on [0, 1]. For y ∈ [0, 1],

p′(y; b) = (2−b)(y1−b+(1−y)1−b); q′(y; b) = (1−y)1−b−(1−b)y(1−y)−b−(1−b)y−b(1−y)+y1−b

Therefore,

lim
y→1/2

p′(y; b)
q′(y; b)

= lim
y→1/2

(2− b)(y1−b + (1− y)1−b)
(1− y)1−b − (1− b)y(1− y)−b − (1− b)y−b(1− y) + y1−b =

2
b
− 1

(3.5)
So, we have that

lim
y→1/2

f (y; b) = lim
y→1/2

p(y; b)
q(y; b)

= lim
y→1/2

p′(y)
q′(y)

(using L’Hôpital’s rule) =
2
b
− 1 (from (3.5)) = f(

1
2

; b)

Therefore, when b 6= 1 and b 6= 2, f is continuous at 1
2 .

2. Assume 0 < b < 1. Fix y1, y2 ∈ [12 , 1] such that y1 > y2. We will show that f(y1; b) > f(y2; b).
For conciseness of expression, define ȳ1 := 1− y1 and ȳ2 := 1− y2. Then

y1y2 − y1ȳ2 > (y1y2)1−b − (y1ȳ2)1−b (3.6)

Similarly,
ȳ1y2 − ȳ1ȳ2 > (ȳ1y2)1−b − (ȳ1ȳ2)1−b (3.7)

Adding (3.6) and (3.7), we get

y1y2 − y1ȳ2 + ȳ1y2 − ȳ1ȳ2 > (y1y2)1−b − (y1ȳ2)1−b + (ȳ1y2)1−b − (ȳ1ȳ2)1−b

Or equivalently,

(y1y2 − ȳ1ȳ2)−
(

(y1y2)1−b − (ȳ1ȳ2)1−b
)
> (y1ȳ2 − ȳ1y2)−

(
(y1ȳ2)1−b − (ȳ1y2)1−b

)
(3.8)

Moreover, since y1, y2 ∈ [12 , 1] and y1 > y2,

y1y2 − ȳ1ȳ2 > 0; (y1y2)1−b − (ȳ1ȳ2)1−b > 0; y1ȳ2 − ȳ1y2 > 0; (y1ȳ2)1−b − (ȳ1y2)1−b > 0 (3.9)
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(3.8) and (3.9) imply that

y1y2 − ȳ1ȳ2

y1ȳ2 − ȳ1y2
>

(y1y2)1−b − (ȳ1ȳ2)1−b

(y1ȳ2)1−b − (ȳ1y2)1−b

Rearranging, we get

(y1)2−b − ȳ1
2−b

y1ȳ1
1−b − y1−b

1 ȳ1

= f(y1; b) >
(y2)2−b − ȳ2

2−b

y2ȳ2
1−b − y1−b

2 ȳ2

= f(y2; b)

3. Since f is symmetric about y = 1
2 , we will prove the theorem for y ∈ [12 , 1). Fix y ∈ [12 , 1).

Observe that when b ≥ 1, (1− y)1−b ≥ y1−b (since y ≥ 1− y). Equivalently

y(1− y)1−b ≥ y2−b (3.10)

For the same reason,
y1−b(1− y) ≤ (1− y)2−b (3.11)

From (3.10) and (3.11), it follows that

y(1− y)1−b − y1−b(1− y) ≥ (y)2−b − (1− y)2−b

or equivalently, f(y; b) ≤ 1.

Using these properties of f we will prove Lemma 3.4.

1. If b ≥ 1, then for all y ∈ [0, 1), f(y; b) ≤ 1 (by Proposition 3.1) < hG. Therefore, for y ∈ [12 , 1),

(y)2−b − (1− y)2−b

y(1− y)1−b − y1−b(1− y)
< hG

⇔ y2−b − (1− y)2−b < hG(y(1− y)1−b − y1−b(1− y))

⇔ y2−b + hGy
1−b(1− y) < (1− y)2−b + hGy(1− y)1−b

⇔ y1−b(y + (1− y)hG) < (1− y)1−b((1− y) + hGy)

⇔ y

1− y
<

(
y

1− y

)b
· (1− y) + hGy

y + (1− y)hG

For y = xi(t), the right hand side of the last inequality above is equal to xi(t+1)/(1−xi(t+1)),
implying that xi(t+ 1) > xi(t).

2. If 1 > b ≥ 2
hG+1 , then observe that f(1

2 ; b) = 2
b − 1 ≤ hG < f(1; b) = ∞. Since f is a

continuous function (by Proposition 3.1), therefore, by the intermediate value theorem, there
must exist a ŷ ∈ [12 , 1) such that f(ŷ; b) = hG. Equivalently,

(ŷ)2−b − (1− ŷ)2−b

ŷ(1− ŷ)1−b − ŷ1−b(1− ŷ)
= hG

Rearranging the above expression, we get

ŷ

1− ŷ
=
(

ŷ

1− ŷ

)b
· (1− ŷ) + hGŷ

ŷ + (1− ŷ)hG

Again, for ŷ = xi(t), we have that xi(t+ 1) = xi(t). The uniqueness of x̂ follows from the fact
that, by Proposition 3.1, f is strictly increasing over (1

2 , 1].
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3. If b < 2
hG+1 , then for all y ∈ [12 , 1], f(y; b) ≥ f(1

2 ; b) (by Proposition 3.1) = 2
b − 1 > hG. In

other words,
(y)2−b − (1− y)2−b

y(1− y)1−b − y1−b(1− y)
> hG

Again, rearranging the above expression, we get

y

1− y
>

(
y

1− y

)b
· (1− y) + hGy

y + (1− y)hG

Again, for y = xi(t), the right hand side of the last inequality above is equal to xi(t + 1),
implying that xi(t+ 1) < xi(t).

This concludes the proof of Lemma 3.4.

Next we will prove Theorem 3 for the case of persistent disagreement, the cases of polarization
and consensus are limiting cases of that case as b → 1 and b → 2/(hG + 1) respectively. We will
show that when 1 > b ≥ 2

hG+1 , the value x̂ defined in Lemma 3.4(b) is a stable equilibrium. The
other two cases can be formally proven using an argument similar to the one below. Next we will
show that when 1 > b ≥ 2

hG+1 , the sequence {xi(t)} is bounded.

Lemma 3.5. Consider a node i ∈ V1. Let 1 > b ≥ 2
hG+1 . Let x̂ ∈ (1

2 , 1) be the solution to (3.3).

1. If x0 < x̂, then for all t > 0, xi(t) < x̂.

2. If x0 > x̂, then for all t > 0, xi(t) > x̂.

Proof of Lemma 3.5. We will prove statement (1). Statement (2) can be proven using a similar
argument.

Proof by induction.
Induction hypothesis: Assume that the lemma statement holds for some t ≥ 0, i.e., assume that

xi(t) < x̂ for some t ≥ 0.
Base case: The statement holds for t = 0 by assumption.
We will show that the lemma statement holds for t+ 1.

xi(t+ 1)
1− xi(t+ 1)

=
(xi(t))b

(1− xi(t))b
si(t)

di − si(t)
<

(x̂)b

(1− x̂)b
si(t)

di − si(t)
(since

1
2
< xi(t) < x̂, and b > 0)

Observe that since xi(t) < x̂ and ps > pd, si(t) = n(psxi(t) + pd(1 − xi(t))) < n(psx̂ + pd(1 − x̂)).
Therefore,

si(t)
di − si(t)

<
psx̂+ pd(1− x̂)
ps(1− x̂) + pdx̂

As a result,

xi(t+ 1)
1− xi(t+ 1)

<
(x̂)b

(1− x̂)b
psx̂+ pd(1− x̂)
ps(1− x̂) + pdx̂

=
x̂

1− x̂
(by definition of x̂)

This implies xi(t+ 1) < x̂. This completes the inductive proof.

Next we will prove that when 1 > b ≥ 2
hG+1 , the sequence {xi(t)} is monotone.

Lemma 3.6. Consider a node i ∈ V1. Let 1 > b ≥ 2
hG+1 . Let x̂ ∈ (1

2 , 1) be the solution to (3.3).
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1. If x0 < x̂, the sequence {xi(t)} is strictly increasing.

2. If x0 > x̂, the sequence {xi(t)} is strictly decreasing.

Proof of Lemma 3.6. We will prove statement (1); statement (2) can be proven using a similar
argument.

Assume x0 < x̂. Then, from Lemma 3.5, we know that for all t ≥ 0, xi(t) < x̂. Fix t ≥ 0.
Let xi(t) = y < x̂. Recall that by definition of x̂, if xi(t) = x̂, xi(t + 1) = xi(t). Equivalently,
f(x̂; b) = hG, where f is defined by (3.4). From Proposition 3.1, we know that f is strictly increasing
over the interval (1

2 , x̂). Therefore, f(y; b) < f(x̂; b) = hG. Equivalently,

(y)2−b − (1− y)2−b

y(1− y)1−b − y1−b(1− y)
< hG

Rearranging, we get

y

1− y
<

(
y

1− y

)b
· (1− y) + hGy

y + (1− y)hG
=

xi(t+ 1)
1− xi(t+ 1)

Equivalently, xi(t+ 1) > xi(t).

Using the fact that the sequence {xi(t)} is monotone and bounded, next we will prove that it
converges to x̂.

Lemma 3.7. Consider a node i ∈ V1. Let 1 > b ≥ 2
hG+1 . Let x̂ ∈ (1

2 , 1) be the solution to (3.3).
Then, limt→∞ xi(t) = x̂.

Proof. For the proof, we will assume that the initial opinion xi(0) = x0 ≤ x̂. The case when x0 > x̂
can be argued in an analogous way.

Observe that if x0 = x̂, then by Lemma 3.4, it follows that for all t ≥ 0, xi(t+ 1) = x̂, and we
are done. So let us assume that 1

2 < x0 < x̂. From Lemma 3.5 and Lemma 3.6, we know that the
sequence {xi(t)} is strictly increasing and bounded. This implies that the sequence must converge
either to x̂ or to some value in the interval [x0, x̂). Consider the function g : [0, 1]→ R defined as

g(y) :=
yb(hGy + (1− y))

yb(hGy + (1− y) + (1− y)b(hG(1− y) + y)
− y

Observe that for all t ≥ 0, xi(t+ 1)− xi(t) = g(xi(t)). Therefore,

(a) for all y ∈ (1
2 , x̂), g(y) > 0 (since, by Lemma 3.6, the sequence {xi(t)} is strictly increasing),

and

(b) g(x̂) = 0 (by definition of x̂).

For the purpose of contradiction, assume that limt→∞ xi(t) = a, where x0 ≤ a < x̂. This implies,
for every ε > 0, there exists a t(ε) such that for all t ≥ t(ε), xi(t + 1) − xi(t) < ε, or equivalently,
that for all t ≥ t(ε), g(xi(t)) < ε.

Let miny∈[x0,a] g(y) = c. It implies for all y ∈ [x0, a], g(y) ≥ c. From (a), it follows that c > 0.
Setting ε = c, our analysis implies the following two properties of g: (1) for all t ≥ 0, g(xi(t)) ≥ c,
and (2) for all t ≥ t(ε), g(xi(t)) < c, which contradict each other. This completes the proof by
contradiction.

This completes the proof of Theorem 3.
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4 Two-island Networks with Non-homogeneous Opinions

In this section, we prove a less restrictive version of the polarization result in Theorem 3, which does
not require that the initial opinions in each island be homogeneous. We show that in a two-island
network, if the bias parameter b ≥ 1 and the initial opinions of the two islands are sufficiently
far apart relative to the homophily index hG, then the biased opinion formation process results in
polarization.

Theorem 4.1. Let G = (V1, V2, E, w) be a (n, n, ps, pd)-two island network. For all (i, j) ∈ E, let
wij = 1. Fix ε ∈ (0, 1

2 ]. Assume for all i ∈ V1, xi(0) ≥ 1
2 +ε and for all i ∈ V2, xi(0) ≤ 1

2−ε. Assume
for all i ∈ V , the bias parameter bi = b ≥ 1. Then, if ε > 1

2hG
, for all i ∈ V1, limt→∞ xi(t) = 1, and

for all i ∈ V2, limt→∞ xi(t) = 0.

Proof. We will show that the opinions of individuals in V1 are strictly increasing whereas that of
individuals in V2 are strictly decreasing.

Lemma 4.1. Fix t ≥ 0. Then,

1. For all i ∈ V1, if xi(t) ∈ [12 + ε, 1), then xi(t+ 1) > xi(t).

2. For all i ∈ V2, if xi(t) ∈ (0, 1
2 − ε], then xi(t+ 1) < xi(t).

Proof. We will prove Statement 1 of the lemma. Statement 2 can be proven using an analogous
argument. Fix an individual i ∈ V1.

xi(t+ 1)
1− xi(t+ 1)

=
wiixi(t) + xi(t)bsi(t)

wii(1− xi(t)) + (1− xi(t))b(di − si(t))

=
wiixi(t) + xi(t)b

(∑
j∈N(i)∩V1

xj(t) +
∑

j∈N(i)∩V2
xj(t)

)
wii(1− xi(t)) + (1− xi(t))b

(∑
j∈N(i)∩V1

(1− xj(t)) +
∑

j∈N(i)∩V2
(1− xj(t))

)
Observe that

∑
j∈N(i)∩V1

xj(t) ≥ nps
(

1
2 + ε

)
and

∑
j∈N(i)∩V2

(1− xj(t)) ≤ npd. Therefore,

xi(t+ 1)
1− xi(t+ 1)

≥
wiixi(t) + xi(t)b

(
nps

(
1
2 + ε

)
+ 0
)

wii(1− xi(t)) + (1− xi(t))b
(
nps

(
1
2 − ε

)
+ npd

)
=

wiixi(t) + xi(t)b
(

1
2 + ε

)
wii(1− xi(t)) + (1− xi(t))b

(
1
2 − ε+ 1

hG

)
>

wiixi(t) + xi(t)b

wii(1− xi(t)) + (1− xi(t))b
(since ε >

1
2hG

)

>
xi(t)

1− xi(t)
(since xi(t) >

1
2

and b ≥ 1)

Or equivalently, xi(t+ 1) > xi(t).

Next we will show that for an individual i ∈ V1, xi(t) ∈ [12 + ε, 1] for all t ≥ 0, and for an
individual i ∈ V2, xi(t) ∈ [0, 1

2 − ε] for all t ≥ 0.

Lemma 4.2. 1. Fix individual i ∈ V1. For all t ≥ 0, xi(t) ∈ [12 + ε, 1].

2. Fix individual i ∈ V2. For all t ≥ 0, xi(t) ∈ [0, 1
2 − ε].

11



Proof. We will prove Statement 1 of the lemma. Statement 2 can be proven using an analogous
argument. Proof by induction on t.

Base case: The statement holds for t = 0 by assumption.
Induction hypothesis: Assume that the statement holds for some t ≥ 0.
We will show that the statement holds for t + 1. If xi(t) = 1, then xi(t′) = 1 for all t′ ≥ t,

and we are done. So let us assume xi(t) < 1. Then, by Lemma 4.1, xi(t + 1) > xi(t). Therefore,
xi(t + 1) ∈ [12 + ε, 1]. Therefore, the statement holds for t + 1. This concludes the proof by
induction.

Next we will show that for an individual i ∈ V1, limt→∞ xi(t) = 1. The corresponding statement
for individuals in V2 can be proven using an analogous argument.

Lemma 4.3. Fix an individual i ∈ V1. Then, limt→∞ xi(t) = 1.

Proof. The proof is along the same lines as that for Lemma 3.7. Again, observe that if xi(t) = 1,
then for all t′ ≥ t, xi(t′) = 1, and we are done. Define a function g : [12 + ε, 1]→ R, as follows:

g(y) :=
wiiy + yb

(
1
2 + ε

)
wii + yb

(
1
2 + ε

)
+ (1− y)b

(
1
2 − ε+ 1

hG

)− y
Observe that for all t ≥ 0, for all xi(t) ∈ [12 + ε, 1), xi(t + 1) − xi(t) ≥ g(xi(t)) > 0. Moreover,
g(1) = 0. For the purpose of contradiction, assume that limt→∞ xi(t) = a, where 1

2 + ε ≤ a < 1.
This implies, for every δ > 0, there exists a t(δ) such that for all t ≥ t(δ), xi(t + 1) − xi(t) < δ,
which implies that for all t ≥ t(δ), g(xi(t)) < δ.

Let miny∈[ 1
2
+ε,a] g(y) = c. It implies for all y ∈ [12 + ε, a], g(y) ≥ c. Since g(y) > 0 for

y ∈ [12 + ε, 1), it follows that c > 0. Setting δ = c, our analysis implies the following two properties
of g: (1) for all t ≥ 0, g(xi(t)) ≥ c, and (2) for all t ≥ t(δ), g(xi(t)) < c, which contradict each other.
This completes the proof by contradiction.

5 Proof of Theorem 4

Let |S(t)| = k. Then, the opinion update under the flocking process can be written in matrix form
as

x(t+ 1) = (1− ε)x(t) + εA(t)x(t)

where A(t) is a n× n matrix given by

Aij(t) =


1
k , if i ∈ S(t), j ∈ S(t)
1, if i = j and i /∈ S(t)
0, otherwise

Observe that A(t) is doubly-stochastic. Then

γ(x(t+ 1)) = γ((1− ε)x(t) + εA(t)x(t)) (by definition of x(t+ 1))
≤ (1− ε)γ(x(t)) + εγ(A(t)x(t)) (since γ is convex in x)
≤ (1− ε)γ(x(t)) + εγ(x(t)) (by Proposition 5.1)
= γ(x(t))

12



Proposition 5.1. γ(A(t)x(t)) ≤ γ(x(t)).

Proof. Let y := A(t)x(t). Since A(t) is doubly stochastic, it follows by a famous theorem by Hardy,
Littlewood and Polya, that x(t) majorizes y. Moreover, γ(x) is a convex symmetric function.
Therefore, it is a Schur-convex function. By definition, a function f : Rn → R is Schur-convex if
f(x1) ≥ f(x2) whenever x1 majorizes x2. Therefore, γ(y) ≤ γ(x(t)).

6 Proofs of Theorems on Recommender Systems and Polarization

In this section we prove Theorem 5 and Theorem 6 from the main paper. Both theorems rely on the
following technical lemma that invokes the Strong Law of Large Numbers to show that the random
quantities we care about all take their expected values with probability 1 as n→∞.

Lemma 6.1. In the limit as n→∞, with probability 1,

(a) for all i ∈ V1, |N(i)| → k,

(b) for all i ∈ V1,
∑

j1∈V2
j1 is RED

Zij1 → xik,

(c) for all i ∈ V1,
∑

j1∈V2
j2 is BLUE

Zij2 → (1− xi)k,

(d) for all j ∈ V2, |N(j)| → mk
2n ,

(e) for every pair of RED books j, j′ ∈ V2,Mjj′ =
∑

i∈V1
ZijZij′ →

mk2( 1
4
+Var(x1))

n2 ,

(f) for every pair of BLUE books j, j′ ∈ V2,Mjj′ =
∑

i∈V1
ZijZij′ →

mk2( 1
4
+Var(x1))

n2 , and

(g) for every RED book j and every BLUE book j′, Mjj′ =
∑

i∈V1
ZijZij′ →

mk2( 1
4
−Var(x1))

n2 .

Proof. Recall that as n → ∞, m = f(n) → ∞. So statements (a) through (g) follow from the
Strong Law of Large Numbers.

Using Lemma 6.1, we will first prove Theorem 6.

6.1 Proof of Theorem 6

Lemma 6.2. In the limit as n → ∞, SimpleSALSA is polarizing with respect to i if and only if i
is biased.

Proof. Assume without loss of generality that xi > 1
2 .

Let pr be the probability that SimpleSALSA recommends a RED book. The proof consists of
two steps: first we show that pr > 1

2 and pr ≤ xi, and then we show that if pr > 1
2 and pr ≤ xi,

13



SimpleSALSA is polarizing with respect to i if and only if i is biased.

pr =
∑

j∈V2:j2 is RED

P[i 3−→ j]

=
∑

j1∈N(i)
j1 is RED

P[i 1−→ j1]
∑
j∈V2
j is RED

P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

P[i 1−→ j2]
∑
j∈V2
j is RED

P[j2
2−→ j]

=
∑

j1∈N(i)
j1 is RED

1
|N(i)|

∑
j∈V2
j is RED

P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

1
|N(i)|

∑
j∈V2
j is RED

P[j2
2−→ j]

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

P[j1
2−→ j] +

∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

∑
j∈V2
j is RED

P[j2
2−→ j]

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈N(j1)∩N(j)

1
|N(j1)|

1
|N(i′)|

+
∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

∑
j∈V2
j is RED

∑
i′∈N(j2)∩N(j)

1
|N(j2)|

1
|N(i′)|

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j1Zi′j
|N(j1)||N(i′)|

+
∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j2Zi′j
|N(j2)||N(i′)|

By Lemma 6.1, in the limit as n→∞, with probability 1,∑
j1∈V2
j1 is RED

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j1Zi′j
|N(j1)||N(i′)|

→ xi
1

k ·mk/2n
n
mk2(1

4 + Var(x1))
n2

= xi

(
1
2

+ 2Var(x1)
)

and∑
j2∈V2

j2 is BLUE

Zij1
|N(i)|

∑
j∈V2
j is RED

∑
i′∈V1

Zi′j2Zi′j
|N(j2)||N(i′)|

→ (1−xi)
1

k ·mk/2n
n
mk2(1

4 −Var(x1))
n2

= (1−xi)
(

1
2
− 2Var(x1)

)

Therefore, in the limit as n→∞, with probability 1,

pr → xi

(
1
2

+ 2Var(x1)
)

+ (1− xi)
(

1
2
− 2Var(x1)

)
Since xi > 1

2 (by assumption), and Var(x1) > 0 (by assumption), we have that

pr >
1
2

and pr ≤ xi (6.1)

First, assume that i is unbiased. Let p be the probability that i accepts the recommendation. There-
fore, the probability that the recommended book was RED given that i accepted the recommendation
is given by

prp

prp+ (1− pr)p
= pr ≤ xi

Therefore, SimpleSALSA is not polarizing.
Now, assume that i is biased. This implies i accepts the recommendation of a RED book with

probability xi and that of a BLUE book with probability 1− xi. Therefore, the probability that the
recommended book was RED given that i accepted the recommendation is given by

prxi
prxi + (1− xi)(1− pr)

>
prxi

prxi + pr(1− xi)
(since pr >

1
2

, from (6.1)) = xi
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Therefore, by definition, SimpleSALSA is polarizing. Recall that our definition of a biased individual
in this section corresponds to b = 1. Consider the general case, where i accepts the recommendation
of a RED book with probability xbi and accepts that of a BLUE book with probability (1−xi)b, where
b ≥ 0. Then, the probability that the recommended book was RED given that i accepted the
recommendation is given by

prx
b
i

prxbi + (1− xi)b(1− pr)
If b ≥ 1, then

prx
b
i

prxbi + (1− xi)b(1− pr)
>

prxi
prxi + (1− xi)(1− pr)

(since xi >
1
2

and b ≥ 1)

>
prxi

prxi + pr(1− xi)
(since pr >

1
2

, from (6.1))

= xi

This shows that SimpleSALSA is polarizing for any b ≥ 1.

Lemma 6.3. In the limit as n → ∞ and as T → ∞, SimpleICF is polarizing with respect to i if
and only if i is biased.

Proof. Assume without loss of generality that xi > 1
2 .

Let pr be the probability that SimpleICF recommends a RED book. For a node j ∈ N(i), let
qjRED be the probability that after T two-step random walks starting at j, the node with the largest
value of count(j), i.e., j∗, is RED, and qjBLUE be the corresponding probability that j∗ is BLUE. Then,

pr =
∑

j1∈N(i)
j1 is RED

P[i 1−→ j1]qj1RED +
∑

j2∈N(i)
j2 is BLUE

P[i 1−→ j2]qj2RED

=
∑

j1∈N(i)
j1 is RED

1
|N(i)|

qj1RED +
∑

j2∈N(i)
j2 is BLUE

1
|N(i)|

qj2RED

=
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

qj1RED +
∑
j2∈V2

j2 is BLUE

Zij1
|N(i)|

qj2RED

Consider T two-step random walks starting at a node j1 ∈ N(i). Observe that qj1RED is exactly the
probability that after these T random walks, there exists a RED node, say j, such that count(j) >
count(j’) for all BLUE nodes j′. However, as T →∞,

P[for all BLUE books j′ ∈ V2, count(j) > count(j’)] = P[for all BLUE books j′ ∈ V2, P[j1
2−→ j] > P[j1

2−→ j′]]

since as T →∞, count(j)→ T · P[j1
2−→ j] (by the Strong Law of Large Numbers). Therefore,

qj1RED = P[for all BLUE books j′ ∈ V2, P[j1
2−→ j] > P[j1

2−→ j′]]

Observe that for two RED books j1 and j,

P[j1
2−→ j] =

∑
i′∈N(j1)∩N(j)

1
|N(j1)|

1
|N(i′)|

=
∑
i′∈V1

Zi′j1Zi′j
|N(j1)||N(i′)|

15



By Lemma 6.1, in the limit as n→∞, with probability 1,

P[j1
2−→ j]→ 1

k

1
mk/2n

mk2(1
4 + Var(x1))
n2

=
1
n

(
1
2

+ 2Var(x1)
)

Similarly, for a BLUE book j′, in the limit as n→∞, with probability 1,

P[j1
2−→ j′]→ 1

k

1
mk/2n

mk2(1
4 −Var(x1))
n2

=
1
n

(
1
2
− 2Var(x1)

)
Since Var(x1) > 0, in the limit as n → ∞, P[j1

2−→ j] > P[j1
2−→ j′] with probability 1. Therefore,

qj1RED = 1. By symmetry qj2RED = 1 − qj2BLUE = 0. Moreover, by Lemma 1, in the limit as
n→∞,

∑
j1∈V2
j1 is RED

Zij1
|N(i)| = xi, with probability 1. Therefore, as n→∞,

pr = xi (6.2)

The rest of the analysis is identical to Lemma 6.2.

This completes the proof of Theorem 6.

6.2 Proof of Theorem 5

Assume, without loss of generality, that xi > 1
2 .

Let pr be the probability that SimplePPR recommends a RED book to i. This probability is
exactly equal to the probability that after T three-step random walks starting at i there exists a
RED node, say j, such that such that count(j) > count(j’) for all BLUE nodes j′. However, as
T →∞,

P[for all BLUE books j′ ∈ V2, count(j) > count(j’)] = P[for all BLUE books j′ ∈ V2, P[i 3−→ j] > P[i 3−→ j′]]

since as T →∞, count(j)→ T ·P[i 3−→ j] with probability 1 (by the Strong Law of Large Numbers).
Therefore,

pr = P[for all BLUE books j′ ∈ V2, P[i 3−→ j] > P[i 3−→ j′]]

For a RED book j ∈ V2,

P[i 3−→ j] =
∑

j1∈N(i)
j1 is RED

P[i 1−→ j1]P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

P[i 1−→ j2]P[j2
2−→ j]

P[i 3−→ j] =
∑

j1∈N(i)
j1 is RED

1
|N(i)|

P[j1
2−→ j] +

∑
j2∈N(i)
j2 is BLUE

1
|N(i)|

P[j2
2−→ j]

P[i 3−→ j] =
∑
j1∈V2
j1 is RED

Zij1
|N(i)|

P[j1
2−→ j] +

∑
j2∈V2

j2 is BLUE

Zij2
|N(i)|

P[j2
2−→ j]

As we showed in the proof of Lemma 6.3, in the limit as n→∞,

P[j1
2−→ j]→ 1

n

(
1
2

+ 2Var(x1)
)

and (by symmetry) P[j2
2−→ j]→ 1

n

(
1
2
− 2Var(x1)

)
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with probability 1. Moreover, by Lemma 1, in the limit as n → ∞,
∑

j1∈V2
j1 is RED

Zij1
|N(i)| → xi, with

probability 1. Therefore, with probability 1,

P[i 3−→ j]→ xi
n

(
1
2

+ 2Var(x1)
)

+
1− xi
n

(
1
2
− 2Var(x1)

)
Similarly, for a BLUE book j′ ∈ V2, in the limit as n→∞, with probability 1,

P[i 3−→ j′]→ xi
n

(
1
2
− 2Var(x1)

)
+

1− xi
n

(
1
2

+ 2Var(x1)
)

Since xi > 1
2 and Var(x1) > 0,

P[i 3−→ j] > P[i 3−→ j′]

with probability 1. In other words, pr = 1. Consider the general definition of a biased individual,
where individual i accepts the recommendation of a RED book with probability xbi and accepts that
of a BLUE book with probability (1−xi)b, where b ≥ 0. Then, the probability that the recommended
book was RED given that i accepted the recommendation is given by

prx
b
i

prxbi + (1− xi)b(1− pr)

Since pr = 1, the probability that a book recommended by SimplePPR was RED given that it was
accepted is exactly pr for all b ≥ 0. Therefore, SimplePPR is polarizing for all b ≥ 0.
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