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Abstract

We present theoretical and empirical results demon-
strating the usefulness of social choice functions in
crowdsourcing for participatory democracies. First, we
demonstrate the scalability of social choice functions by
defining a natural notion of ε-approximation, and giving
algorithms which efficiently elicit such approximations
for two prominent social choice functions: the Borda
rule and the Condorcet winner. This result circumvents
previous prohibitive lower bounds and is surprisingly
strong: even if the number of ideas is as large as the
number of participants, each participant will only have
to make a logarithmic number of comparisons, an expo-
nential improvement over the linear number of compar-
isons previously needed. Second, we apply these ideas
to Finland’s recent off-road traffic law reform, an ex-
periment on participatory democracy in real life. This
allows us to verify the scaling predicted in our theory
and show that the constant involved is also not large.
In addition, by collecting data on the time that users
take to complete rankings of varying sizes, we observe
that eliciting partial rankings can further decrease elici-
tation time as compared to the common method of elic-
iting pairwise comparisons. Finally, we give a few vari-
ations of our initial algorithms that improve practical
use: we improve elicitation time by taking advantage of
the specific preference distribution and we show how
one can handle streams of ideas arriving over time in a
way which does not significantly increase the total com-
parisons elicited.

Introduction
Recent years have seen an increase in democratic innova-
tions (Smith 2009) aimed at increasing the participation of
the public in policy-making. This observation, coupled with
the increasing prevalence of internet-based communication,
points to a very real possibility of implementing participa-
tory democracies on a mass-scale in which every individual
is invited to contribute their ideas and opinions (Salganik
and Levy 2012).

One important question in implementing crowdsourcing
experiments of this type is the aggregation problem: given
a large number of ideas, how can one identify the top ideas
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without requiring any individual, whether an appointed gov-
ernment expert or a participant, to spend too much time or
effort in the evaluation process? A natural approach that one
might want to use in the democratic setting is to use vot-
ing rules, also known as social choice functions (Brams and
Fishburn 2002), to find the top ideas or overall ranking. Un-
fortunately, in the standard setting of rank aggregation, each
participant is required to submit a full ranking of all the
ideas, a task which is both cognitively burdensome and time-
consuming.

In this paper, we present theoretical and empirical results
indicating the usefulness of social choice functions for par-
ticipatory democracies. Our main contributions are two-fold.
First, we demonstrate the scalability of social choice func-
tions by defining a natural notion of an approximate winner
or ranking. This allows us to design algorithms which are
able to approximate two prominent social choice functions,
the Borda rule and the Condorcet winner, while only using
a small number of pairwise comparisons. The algorithms
are extremely simple, but are able to circumvent previous
prohibitive lower bounds (Conitzer and Sandholm 2005;
Service and Adams 2012) and are surprisingly strong in two
ways. First, the total number of pairwise comparisons is in-
dependent of the number of participants. Second, even if the
number of ideas is as large as the number of participants,
each participant will only have to make a logarithmic num-
ber of comparisons, an exponential improvement over the
linear number of comparisons previously needed.

Borda Condorcet

CS ’05 Ω(nm logm) Ω(nm)

SA ’12 Ω(nm log 1
ε ) N/A

Our Results O(mε2 log m
δ ) O(mε4 log2 m

δε2 )

Figure 1: Comparison of our results with prior lower bounds.
We circumvent these lower bounds by finding Monte Carlo
randomized algorithms which achieve an ε-approximate re-
sult with high probability (at least 1− δ). The lower bounds
of CS ’05 and SA ’12 only hold for Los Vegas randomized
algorithms in which one can distinguish between successful
and unsuccessful instances.



Essentially, we show that these social choice functions,
which scale inefficiently in general, can be easy to imple-
ment when the winner wins by a margin or an approximation
suffices.

Second, we demonstrate the practicality of these ideas
by applying them to Finland’s recent off-road traffic law
reform, an experiment on participatory democracy in real
life (Aitamurto and Landemore 2013). The Finnish experi-
ment, as we will refer to it from this point on, engaged the
Finnish people in 1) identifying problems, 2) proposing so-
lutions, and 3) evaluating ideas for a revision of their off-
road traffic law. In the evaluation stage, 308 participants took
part in ranking and rating ideas in 41 different topics, each
of which had a number of ideas ranging from 2 to 15. For
an approximation of ε = 0.05 and 0.1, we are able to ob-
serve scaling which matches our theory and show that the
constant involved is also not large. As an example, when the
derived trend is extrapolated to the case of aggregating 100
ideas with 1000 participants, an error of 0.05 only requires
each participant to make 19 comparisons. If we only need an
error of 0.1, then 8 comparisons suffice.

In addition, by collecting data on the time that users take
to complete rankings of varying sizes, we are able to show
that eliciting partial rankings can further decrease elicita-
tion time as compared to the common method of eliciting
pairwise comparisons. Though users naturally take longer
to rank a larger number of proposals, the data demonstrates
that the time per bit elicited decreases by 33% when rank-
ing 3 proposals, 48% when ranking 4 proposals, and 63%
when ranking 6 proposals. Finally, we give further improve-
ments that can be used in practical situations. We first show
that one can further decrease elicitation time by taking ad-
vantage of the preference distribution. Then we show that
one can also handle the case when ideas are streaming while
still keeping elicitation time small.

Outline
The remainder of the paper will be structured as follows.
We first describe related work and briefly highlight our con-
tributions. This is followed by a section on our theoreti-
cal work on the efficient elicitation of social choice func-
tions, in which we state and motivate our definitions for ε-
approximate rankings and winners, detail our elicitation al-
gorithms, and prove that these algorithms are able to effi-
ciently find ε-approximations. We then describe the Finnish
experiment and use it to show the practicality of the pre-
viously stated algorithms. This section concludes with data
showing that one can further decrease elicitation time by
eliciting partial rankings. Finally, we give two further al-
gorithmic improvements that further improve the practical
applicability of our results by further reducing elicitation
time and by showing that one can handle ideas arriving in
a streaming fashion.

Background and Related Work
Participatory democracies and crowdsourcing
The notion of participatory democracy emphasizes the role
of citizen involvement in political decision-making as a sup-

plement to, and even a substitute for, representative demo-
cratic institutions. Participatory democracy dates back at
least to the 1960s and 1970s. Its core argument states that
democracy is made more meaningful when citizens are di-
rectly involved in the direction of political affairs (Pateman
1979; Macpherson 1977; Fung and Wright 2003). Many par-
ticipatory democrats also emphasize the necessity of em-
powering citizens in other areas of their lives as well, such
as the workplace and the family.

Participatory democracy has been applied over the
decades in various settings, for instance in participatory bud-
geting projects, which started in Brazil in the 1960s and
have since spread globally (Cabannes 2004). In recent years,
as a parallel development to improved digital technologies,
there has been a rise of online applications that support civic
engagement in participatory democracy. One of these ap-
plications is crowdsourcing, which can be used as knowl-
edge search mechanism in policy-making. In crowdsourced
policy-making, citizens are asked to contribute their knowl-
edge and ideas online (Aitamurto 2012; Brahbam 2013).
Crowdsourcing has even been recently applied in the context
of constitutional reform in Iceland (Landemore 2014). One
important challenge in large-scale ideation and deliberation
systems is the assessment of the crowd-generated ideas, par-
ticularly in the instances where the volume of participation
is high: How can the ideas be assessed by the crowd in an
effective and reliable way?

Aggregation and preference elicitation
One method of aggregation which has been long associated
to the democratic setting is rank aggregation, originating
from the theory of social choice (Brams and Fishburn 2002).
In rank aggregation, n voters have preferences overm candi-
dates, and one would like to design a social choice function
which takes this set of rankings as an input, and outputs an
aggregate ranking or winner. Two of the early and promi-
nent social choice functions proposed were the Borda rule
and Condorcet criterion1. In the Borda rule, Borda proposed
that scores should be assigned to each candidate based on
their position in the set of rankings. A rank of one gives a
candidate m − 1 points, a second-place gives a candidate
m − 2 points, all the way down to the lowest rank, which
gives a candidate 0 points. Condorcet took an axiomatic ap-
proach, stating that if a candidate beats all other candidates
in a pairwise election, then this should naturally be the win-
ner.

One difference in applying social choice to crowdsourc-
ing, as compared to the standard setting, is that there may
be a large number of candidates, making it impractical for a
voter to submit a complete ranking. In such a setting, one
wants to understand whether it is possible to use a small
number of simple queries (such as pairwise comparisons)
to find the desired output.

(Conitzer and Sandholm 2002) showed that finding out
how to elicit optimally is NP-complete and (Conitzer and
Sandholm 2005) showed that, for many common voting

1Young has a fascinating historical discussion on these two
rules (Young 1988).



rules, the number of bits necessary to elicit the output rank-
ing or winner cannot be reduced by more than a constant
factor. This was extended by (Service and Adams 2012),
who showed that many of these lower bounds also held
for finding approximate winners. Attempts to circumvent
these lower bounds typically either restrict the set of rank-
ings allowed (the preference domain), assume distributions
on voter preferences, or focus on experimental analysis of
elicitation.

For instance, (Conitzer 2009) considers how to elicit
single-peaked preferences using pairwise comparisons and
(Goel and Lee 2012) considers the same setting but assume
that candidates and participants coincide, and that the single-
peaked axis is unknown.

Several papers have discussed top-k elicitation in which
one asks participants to reveal their top ranked ideas. The
lower bounds of (Conitzer and Sandholm 2005) and (Ser-
vice and Adams 2012) still apply to these settings since they
are lower bounds on the number of bits elicited. (Kalech
et al. 2011) shows that an iterative algorithm does well ex-
perimentally on datasets and under certain distributional as-
sumptions. (Oren, Filmus, and Boutilier 2013) derives lower
bounds on k under distributional assumptions. They also
show that if preferences are drawn from a Mallow’s model,
then there are conditions for which knowing the model pa-
rameters themselves are enough to determine the Borda rule
with high probability.

(Lu and Boutilier 2011a) considers a notion of approxi-
mate winners based on maximum regret. For a scoring func-
tion associated to a given voting rule, the regret is the worst-
case score of that candidate over all possible rankings con-
sistent with the revealed preferences. They propose a greedy
heuristic for vote elicitation in which they minimize the
maximum regret at each step and analyze it experimentally
on various datasets. For the Borda rule, their notion of max-
imum regret is similar to the notion in (Service and Adams
2012) after a suitable normalization. Since their algorithm
is deterministic, the lower bounds of (Service and Adams
2012) apply. (Lu and Boutilier 2011b) also uses the maxi-
mum regret framework and considers how to find the num-
ber k such that eliciting the top-k candidates of all partic-
ipants results in finding a winner with bounded maximum
regret. They present an algorithm that finds an estimate for
k given a distributional assumption on the preference profile.
As above, for the Borda rule, the lower bounds of (Service
and Adams 2012) still apply.

(Caragiannis, Procaccia, and Shah 2013) is slightly differ-
ent in that it focuses on sampling participants, each of whom
must give their full ranking. Assuming that all participants
are drawn from a Mallows model, they then show that the
number of sampled participants needed to find the correct
ranking with high probability is logarithmic in the number of
candidates for a large class of voting rules. (Chevaleyre et al.
2011) considers elicitation given dynamic sets of candidates.
Since they are looking for an exact winner, the lower bounds
of (Conitzer and Sandholm 2005) apply. (Procaccia 2008)
discusses elicitation of the Condorcet winner and finds the
exact complexity required, when queries are complete pair-
wise elections between pairs of candidates.

The application of social choice to crowdsourcing has
also been considered in (Mao, Procaccia, and Chen 2013)
through the maximum-likelihood perspective to social
choice functions. The general problem of aggregation has
also been studied outside of social choice. These include
learning parameters of statistical models (Salganik and Levy
2012), or the use of ratings instead of rankings (Balinski and
Laraki 2007).

Our Contributions
We define ε-approximations of social choice functions and
show that, despite previous lower bounds of Ω(mn), we are
able to elicit these approximations in time O(m logm) (and
factors depending on the accuracy required), which makes
elicitation schemes incredibly practical for crowdsourcing
applications. Prior results have all required restrictions of
the preferences or have been experimental.

Our definitions of approximation are novel in that they re-
late to the underlying preference profile as opposed to only
the output produced: an ε-approximate ranking is a rank-
ing that could have been the output ranking by changing at
most ε fraction of the comparison values involving each can-
didate. Such a definition is intuitive for the crowdsourcing
problem in that the notion of distance can be directly trans-
lated to the question of “how close was this ranking from
being the winner”?

We note that the concept of distances dependent on the un-
derlying preference profile is not new and is rooted in the lit-
erature on distance rationalizability of voting rules (Meska-
nen and Nurmi 2008; Elkind, Faliszewski, and Slinko 2010);
however, the application of this towards approximation and
efficient elicitation has been unexplored thus far.

We verify these results through a real life participatory
democracy, in which citizens of Finland voted on propos-
als which they created for 41 separate topics. This allows
us to experimentally analyze the scaling of the elicitation
scheme as a function of the number of proposals as well as
determine the constant involved in the algorithm for this in-
stance. We are not aware of other experimental work which
analyzes the scaling of algorithms. Importantly, our experi-
ments also identify a behavioral phenomena which may be
a further means to decrease elicitation time from a human
interaction perspective. Specifically, we show that the time
per bit of information elicited decreases when one uses par-
tial rankings as opposed to the standard method of pairwise
comparisons.

Finally, we show that one can take advantage of the dis-
tribution to further improve elicitation time. We also give a
novel algorithm which handles preference elicitation when
ideas arrive in a streaming fashion.

Efficient elicitation of social choice functions
In the following section, we will present our theoretical work
on the efficient elicitation of social choice functions. We first
define and motivate our notion of approximate winners and
rankings. We then show that a simple sampling algorithm
is able to approximate the Borda rule in only O(mε2 log m

δ )
comparisons and highlight an interesting insight about the



role honesty plays in achieving such a result. Finally, we
show a variant of this algorithm which is able to approximate
the Condorcet winner.

Notation
Let C denote the set of ideas and V the participants. Let m
and n denote the number of ideas and participants respec-
tively. If participant i prefers idea x to y, we denote this by
x �i y.

The Borda score of an idea x is defined as s(x) =∑
i∈V (m−ri(x)), where ri(x) denotes the rank that partic-

ipant i gives to idea x. That is, an idea receives m−1 points
if it was ranked first in a ranking, m − 2 if it was ranked
second, and so on. Equivalently, the Borda score can also be
defined as s(x) =

∑
i∈V

∑
y∈C\{x} 1{x�iy}, the total num-

ber of comparisons in which x won. The Borda winner x∗
is any idea with the highest score, i.e. s(x∗) = maxx s(x).
The Condorcet winner is defined as an idea x which beats
all other ideas in a pairwise election.

Approximate rankings and winners
Define the normalized Borda score of an idea x to be n(x) =
s(x)/

∑
x′∈C s(x

′), so that the sum of all the Borda scores
is 1. Define an ε-Borda winner to be any idea x such that
s(x) ≥ (1 − ε)s(x∗). Define an ε-Borda ranking to be any
ranking resulting from a normalized score vector n̂ such that
for any idea x, |n̂(x)− n(x)| ≤ 2ε/m.

Define an ε-Condorcet winner to be an idea x which re-
ceives at least (1− ε)n2 votes against at least (1− ε)(m− 1)
other candidates.
Example 1. Suppose that 100 participants supply rankings
of 3 candidates, and that these result in the following com-
parisons (the value in the table represents the number of par-
ticipants preferring the left candidate to the top candidate):

A B C
A - 52 45
B 48 - 64
C 55 36 -

The Borda scores for candidates A, B, and C are 97, 112,
and 91 respectively, so that the Borda ranking isB � A � C
and the Borda winner is B. There is no Condorcet winner
since A beats B, B beats C, and C beats A.

Simple calculations show us that A is a 0.14-Borda win-
ner since 1 − 97/112 ≈ 0.134 and that C is a 0.19-Borda
winner since 1 − 91/112 ≈ 0.188. We can also calcu-
late the normalized Borda scores, which are approximately
0.323, 0.373, 0.303 respectively. By noting that the ranking
B � C � A could have resulted from the normalized
Borda score 0.313, 0.373, 0.313, we get that |n̂(x)−n(x)| ≤
2·0.015/3 for all x, which means that this ranking is a 0.015-
Borda ranking. We also see that B is a 0.04-Condorcet win-
ner since 1−48/50 = 0.04 andA is a 0.1-Condorcet winner
since 1− 45/50 = 0.1.

We can see that the definitions capture the intuition that
neither A or C are close to being Borda winners, but that
the ranking B � C � A is close to being a Borda ranking.
We also see agreement in the intuition that bothA andB are
approximate Condorcet winners,B being closer thanA.

These two approximation definitions fall under the um-
brella of broader definitions which have a practical intuition.
Consider any social choice function which only depends on
the number of comparisons won for every pairwise election
(as in the table of Example 1). Then a broader definition of
an ε approximate winner is a candidate that could be made
the winner by changing at most ε fraction of the compar-
isons involving that candidate. Similarly, a broader defini-
tion of an ε approximate ranking is a ranking that could be
made the output ranking by changing at most ε fraction of
the comparisons values involving each candidate2.

Theorem 1. If x is an ε-Borda (or ε-Condorcet) winner, then
it is possible to make it the Borda (or Condorcet) winner by
changing at most ε fraction of the (m − 1)n comparisons
involving x.

Proof. Suppose x is an ε-Borda winner so that s(x) ≥ (1−
ε)s(x∗). Since the Borda score is just equal to the number
of comparisons won by a given candidate, this means that x
can be made the winner by changing ε · s(x∗) of his losing
comparisons into winning ones. Since ε·s(x∗) ≤ ε(m−1)n,
we are done.

Suppose x is an ε-Condorcet winner so that x receives at
least (1−ε)n2 votes against at least (1−ε)(m−1) other can-
didates. For every other candidate y, change enough compar-
isons between x and y so that xwins at least n2 of these com-
parisons, making it the Condorcet winner. This number will
be at most (1−ε)(m−1)εn2 +ε(m−1)n2 ≤ ε(m−1)n.

Theorem 2. If � is an ε-Borda ranking, then it is possible
to make it the Borda ranking by changing some number of
comparisons such that for any candidate x, at most ε frac-
tion of the (m−1)n comparisons involving x were changed.

Proof. Suppose that � is an ε-Borda ranking. By definition,
it must result from a normalized score vector n̂ such that for
any idea x, |n̂(x) − n(x)| ≤ 2ε/m. Letting ŝ denote the
corresponding score vector, we have that |ŝ(x) − s(x)| ≤
2ε
m ·

m(m−1)n
2 = ε(m− 1)n. This means that we can reach ŝ

by changing some number of comparisons of which at most
ε(m− 1)n correspond to any given candidate.

We emphasize the practical nature of this broader defini-
tion: if a candidate is an approximate winner then this lit-
erally means that it could have been a winner given a small
perturbation in voter inputs. The smaller the approximation
distance, the smaller the perturbation is needed to make it
a winner. In many practical settings, the entire set of vot-
ers in the preference profile is only a subset of the “true”
voting population, many of which did not submit a rank-
ing at all. This means that the actual winner produced under
the given preference profile may also be only an approxi-
mation of the “true winner” had everyone participated, im-
plying that it is reasonable to allow slight perturbations in
the input. The same holds for the broader definition of an
approximate ranking.

2Note: we allow changing a fractional number of comparisons
to prevent artificially large errors resulting from having an odd or
even number of voters.



ALGORITHM 1: Approximating the Borda rule
Input: m ideas, n participants, a number of samples N
Output: An output ranking
count[·] = 0;
for i← 1 to N do

Sample ideas c1 and c2 and a participant v uniformly at
random;
if c1 �v c2 then

count[c1] = count[c1] + 1;
else

count[c2] = count[c2] + 1;

return any ranking such that for any x ranked higher than y,
count[x] ≥ count[y];

Simple does it: eliciting the Borda rule with naive
sampling
Consider the following sampling algorithm (Algorithm 1).
At each step, sample a participant uniformly at random and
ask him to compare two ideas sampled uniformly at random.
Increment a counter for the idea chosen by the participant
and repeat N times. Now form an output ranking by order-
ing the ideas from those with the highest to lowest counter
values, with ties broken arbitrarily.
Theorem 3. For any ε, δ ∈ (0, 1), Algorithm 1 with N =
O(mε2 ln m

δ ) returns an ε-Borda ranking with probability at
least 1 − δ. Also, the top idea in the returned ranking is an
ε-Borda winner with probability at least 1− δ.

Proof. To prove that the output ranking is an ε-Borda rank-
ing, we just need to identify a normalized score vector n̂
for the resulting output ranking such that |n̂(x) − n(x)| ≤
2ε/m. Let n̂(x) = count[x]/

∑
x′∈C count[x′] and, for con-

venience, let Z =
(
m
2

)
n. Then,

E[n̂(x)] =
1

Z

∑
i∈V

∑
y∈C\{x}

1{x�iy}

=
1

Z

∑
i∈V

(m− ri(x)) =
1

Z
s(x) = n(x)

We will now use the following special form of Chernoff
bounds (see (Motwani and Raghavan 1995), Theorems 4.2,
4.3): Let S be a sum of independent Bernoulli random vari-
ables, and µ be an arbitrary number such that µ ≥ E[S].
Then for any ε ∈ [0, 1],

Pr [|S − E[S]| > εµ] ≤ 2e−ε
2µ/4.

We are going to apply Chernoff bounds to the random vari-
able S(x) = count[x]. Observe that S(x) is a sum of inde-
pendent Bernoulli random variables since our comparisons
are sampled with replacement (it is possible to sample the
exact same comparison twice), that S(x) = N · n̂(x), and
E[S(x)] = N · n(x). Further, let µ = 2N/m denote the
expected number of comparisons in which x participates.
Since x must participate in a trial to win, we must have
E[S(x)] ≤ µ and hence, we can apply the Chernoff bound
stated above, i.e., for any ε ∈ [0, 1], we have:

Pr [|S(x)− E[S(x)]| > εµ] ≤ 2e−ε
2µ/4.

Equivalently, we have

Pr [|n̂(x)− n(x)| > 2ε/m] ≤ 2e−ε
2N/(2m).

Applying union bound, and setting N = 2m
ε2 ln 2m

δ , the
probability that the ranking is not an ε-Borda ranking is
at most 2me−ε

2N/(2m) = δ. It immediately follows that
the top idea is an ε-Borda winner with probability at least
1− δ.

When the number of candidates is comparable to the
number of voters, i.e. m = O(n), then Theorem 3 states
that each voter only needs to make O(logm) comparisons,
which is exponentially better than the O(m) comparisons
required by the lower bound. Note for concreteness that for
m ≤ 1,000,000, logm ≤ 20. We note the surprising sim-
plicity of Algorithm 1. The simplicity is so extreme that one
does not know whether to be delighted or disappointed.

For practical considerations, we also note that one can de-
crease the number of samples required by a factor of 2 by
decrementing the count of the losing idea in Algorithm 3.

A brief note on the importance of honesty
We take a brief detour to discuss Theorem 3 in light of the
previously known lower bound. Let γ = 1 − 1√

2
. In (Ser-

vice and Adams 2012), it was stated that any deterministic
algorithm producing the ε-Borda winner, for ε ∈ [0, γ], must
elicit Ω( (γ−ε)3

log(1/(γ−ε))mn− log log 1
γ−ε ) bits of information3.

As noted in (Conitzer and Sandholm 2005), the method
that is used (of fooling sets) means that this lower bound
applies not only to deterministic algorithms, but also to any
nondeterministic algorithm which is able to find the approx-
imate Borda winner along some computation path. In other
words, this lower bound applies to all algorithms which are
able to produce a “certificate” of their computation which, if
shown to some neutral party, can be used to verify that the
produced candidate is indeed an ε-Borda winner. The reason
that Algorithm 1 is able to circumvent this lower bound is
that it is not able to produce such a certificate. That is, it is
possible that after eliciting more comparisons, we find that
our given candidate was not an ε-Borda after all. The algo-
rithm relies on the uniform sampling used to obtain proba-
bilistic guarantees regarding how the other comparisons are
distributed.

This observation results in an interesting and thought-
provoking insight on the importance of honesty (or trust,
security, etc. . . ) in participatory democracies. Specifically,
if the governing body in charge of the elicitation process is
required to produce evidence that the comparisons elicited
prove that some candidate is an ε-Borda winner, then the
lower bound given in (Service and Adams 2012) states that it
is impossible to elicit efficiently (do better than O(m) com-
parisons per participant). However, if the governing body is
honest in choosing its comparisons uniformly at random, if
the people trust that this is true, and if the algorithm is se-
cure to outside manipulations of its randomness, then we

3We note that their result is stated in terms of δ = γ − ε. We
translated it here to be consistent with the notation we have been
using.



ALGORITHM 2: Approximating the Condorcet winner
Input: m ideas, n participants, number of candidate pairs N1,

participant sample size N2

Output: An output ranking
count[·] = 0;
for i← 1 to N1 do

Sample ideas c1 and c2 and N2 participants uniformly at
random;
if c1 receives at least 1

2
(1− 2ε) fraction of the votes then

count[c1] = count[c1] + 1;

if c2 receives at least 1
2
(1− 2ε) fraction of the votes then

count[c2] = count[c2] + 1;

return any ranking such that for any x ranked higher than y,
count[x] ≥ count[y];

are suddenly able to reduce the elicitation time to O(logm)
comparisons per participant through the use of Algorithm 1.

Eliciting the Condorcet winner with another
simple sampling algorithm
The algorithm for eliciting the Condorcet winner (Algorithm
2) has a very similar flavor to that of the Borda rule. At each
step, sample a set of N1 participants uniformly at random
and ask them to compare two ideas sampled uniformly at
random. Increment a counter for the idea chosen by a larger
number of the sampled participants and repeat N2 times.
Now form an output ranking by ordering the ideas from
those with the highest to lowest counter values, with ties
broken arbitrarily.

Theorem 4. For any ε, δ ∈ (0, 1), consider Algorithm 2
with N1 = O(mε2 ln m

δ ) and N2 = O( 1
ε2 ln N1

δ ). Then if an
ε-Condorcet winner exists, then the top idea in the returned
ranking is a 3ε-Condorcet winner with probability at least
1− δ.

Proof. Suppose that O( 1
ε2 ln α

δ ) voters are chosen to vote in
each round. By Chernoff bounds, we can conclude that the
following “bad” events can happen with probability at most
O( δα ) for a given round.

1. A candidate who is preferred by at least n2 (1 − ε) voters
receives less than 1

2 (1−2ε) fraction of the sampled votes.
2. A candidate who is preferred by at most n2 (1 − 3ε) vot-

ers receives more than 1
2 (1 − 2ε) fraction of the sampled

votes.

Choosing α = N1 then guarantees that the probability of
any of these happening for any of the rounds is at mostO(δ).
Now suppose thatO(mε2 ln β

δ ) pairs of candidates are chosen.
Then by Chernoff bounds, assuming that none of the previ-
ously mentioned bad events occur, we can conclude that the
following “bad” events can happen with probability at most
O( δβ ) for a given candidate.

1. A candidate who receives at least n2 (1 − ε) votes against
at least (1 − ε)(m − 1) candidates receives counter in-

crements for less than 2
m (1− 2ε) fraction of the sampled

pairs.
2. A candidate who receives at most n2 (1− 3ε) votes against

at least 3ε(m− 1) candidates receives counter increments
for more than 2

m (1− 2ε) fraction of the sampled pairs.

Choosing β = m then guarantees that the probability of any
of these happening for any of the candidates is at mostO(m)
so we are done since this implies that any candidate who is
not a 3ε-Condorcet winner must have a lower count than the
ε-Condorcet winner.

Although this result is only interesting when an ε-
Condorcet winner exists, it can be generalized to finding an
ε-Copeland winner using the same argument. Unfortunately,
although it is intuitive that the ranking returned by Algo-
rithm 2 might give an ε-Copeland winner, it is not straight-
forward to prove that this is true.

Using the Kendall-tau distance to define
approximations
In the previous sections, our broader definition of an ε-
approximate winner or ranking was a candidate or ranking
that could be made the output by changing at most ε fraction
of the comparison values involving each candidate. There
are two potentially undesirable properties of this definition.
First, the resulting set of comparisons may not actually be
achievable with a set of rankings since we allow swapping
arbitrary comparisons. Second, this formulation treats all
comparisons equally. This may not be natural since swap-
ping a first and last ranked candidate is not a “small pertur-
bation” in the participant preferences.

To deal with this, one can generalize the previous def-
initions: given any distance metric d between two prefer-
ence profiles and the true profile P , a ranking or candi-
date is an ε-approximate ranking or winner with respect
to d if it is the winning ranking or candidate under a pro-
file P ′ such that d(P,P ′) ≤ ε. This notion of using dis-
tances between preference profiles is the same setup as
the literature on distance rationalizability in which vot-
ing rules are interpreted as finding the closest “consensus
profile” to the given profile (Meskanen and Nurmi 2008;
Elkind, Faliszewski, and Slinko 2010).

With this framework, a better distance between two pref-
erence profiles might be the number of adjacent swaps
needed to go from one profile to the other, divided by
(m − 1)n which is the total number of comparisons that a
given candidate is a part of. It is not hard to show that Algo-
rithm 1 also returns an ε-Borda winner under this definition
using essentially the same number of comparisons.

Theorem 5. For any ε, δ ∈ (0, 1), the top idea in the re-
turned ranking of Algorithm 1 with N = O(mε2 ln m

δ ) is an
ε-Borda winner with respect to the Kendall-tau distance de-
fined above with probability at least 1− δ.

Proof. The proof is similar to that of Theorem 3. Let x
be the returned winner and x∗ be the true Borda winner.
By the proof of Theorem 3, and using 4 times the number
of comparisons, the Borda score of x must be at least the



Borda score of x∗ minus εn(m − 1). Then consider mak-
ing εn(m − 1) adjacent swaps in the original profile, each
of which moves x to a higher position. In this new profile,
the Borda score of x increased by εn(m− 1) and the Borda
score of all other candidates either stayed the same or went
down. Therefore, x is the Borda winner in this new profile
and we are done.

Unfortunately, Algorithm 2 is unable to find an ε-
Condorcet winner under this definition.

Empirical Insights on Elicitation from the
Finnish experiment

In this section, we introduce some experimental work done
in collaboration with the Finland Ministry of the Environ-
ment on crowdsourcing the Finland off-road traffic law.
First, we analyze Algorithm 1 on the comparison data col-
lected for 41 different topics, showing that the total num-
ber of comparisons required to achieve ε = 0.05, 0.1 scales
linearly (slightly smaller than the O(m logm) guarantees).
The practicality of the given algorithm is further supported
by showing that the constant involved in the scaling is not
large.

Following this, we present an HCI (human computer
interaction) centric approach to reducing elicitation time.
Specifically, we analyze the time it takes for participants to
rank sets of proposals of varying sizes, with the hypothesis
that the time vs. information tradeoff may be favorable for
small sets. When plotting the time per bit elicited against the
size of the rankings, we find that eliciting partial rankings of
up to size six can reduce elicitation time by around a factor
of three.

The Finnish experiment: background and
experimental setup
The Finnish experiment was an experiment in policy crowd-
sourcing aiming to reform an existing law on off-road traf-
fic regulation, (which applied essentially to the regulation of
snowmobiles and ATVs in nature). The crowdsourced law
reform was organized in collaboration with the Finland Min-
istry of the Environment over a period of several months
(January 2013 to October 2013) and sought to engage the
Finnish people in three successive tasks: 1) identifying prob-
lems with the existing law, 2) proposing solutions or ele-
ments of solution to these problems, and 3) evaluating the
generated ideas so as to offer the civil servants and mem-
bers of Parliament a ranking of the top ideas according to
the crowd. The crowdsourcing phase of the experiment was
largely successful and is now over. It remains to be seen
whether the classical representative institutions and actors
involved will now use the crowd’s input in any productive
and significant way (for more details, see (Aitamurto and
Landemore 2013)).

This paper will focus on the evaluation portion of the ex-
periment, as related to the use of social choice functions
for participatory democracies. In-depth information and in-
sights learned on the overall participatory process will be
published in a forthcoming paper.

The evaluation was carried out in the following way: par-
ticipants logged into a website and were presented with a
series of “actions”, each of which could take the form of a
rating, a comparison, or a ranking. A rating action presented
the participant with a single idea and asked for a rating from
one to five stars; a comparison action presented the partici-
pant with two ideas and asked which one they thought was
better; finally, a ranking action presented the participant with
three or more ideas and asked them to order them from most
liked to least liked.

There were 308 participants, 41 different topics, and 240
total ideas among the different topics. The topics ranged in
size from two to fifteen ideas. The number of topics of a
certain size was 5, 10, 5, 4, 4, 3, 1, 2, 0, 3, 1, 0, 1, 2 for sizes
two to fifteen respectively.

For most of the topics4, the following process was used
to assign actions to each participant (all randomness is inde-
pendent unless otherwise stated). Let m denote the number
of proposals in the topic.

1. For each proposal, a rating action is assigned with proba-
bility 0.18.

2. For each pair of proposals, a comparison action is as-
signed with probability p, where p = 0.3, 0.15, 0.03, 0.02
depending on if m = 2, m = 3, 4, m = 5, or m > 5
respectively.

3. If m ≥ 5, then a single ranking action is assigned of
length dm/2ewith probability 0.5. If the preceding action
was not assigned, andm ≥ 7, then a single ranking action
is assigned of length 3 with half the remaining probability
(0.25).

In expectation, each participant received around 84 actions,
of which 25 were comparisons, 44 were ratings, and 15 were
rankings of varying lengths. In total, 72,003 effective com-
parisons and 13,300 ratings were collected.

As an example of types of ideas we saw, one of the topics
was: “Establishing new routes: What would be the best way
to regulate the establishment of a new route on landowner
property even if the landowner is resisting the route?” The
five proposals for this topic were:

1. It should not be possible to establish a route on private
property without the landowner’s consent. Landowners
should have an ultimate right to control their own prop-
erty.

2. It should be possible to establish a route on private prop-
erty without the landowner’s consent but only when this
does not cause harm to the landowner.

3. It should be possible to establish a route on private prop-
erty, but the need for a route should be justified by more
important reasons than improving the public traffic net-
work or common recreational use.
4Two of the topics of length 11 were special in that they listed

topic categories, and asked participants to rank them either in order
of importance or in predicted order of importance. All participants
were asked to rank the full list of topic categories based on these
two metrics, and no ratings were collected. For one of the topics of
length 5, we asked all participants to rate and rank all the ideas.
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Figure 2: This shows a single simulation for the evolution
of the ε-Borda ranking of Algorithm 1. There were 308 par-
ticipants, all of which were asked to rank all 5 proposals of
this topic, resulting in a total of 3080 effective comparisons.
One can see that ε stays below 0.05 and 0.1 after 764 and
281 comparisons respectively. Since there were 308 partic-
ipants, the number of comparisons per participant is only
around two or one respectively.

4. There should be more strict and clear criteria in the ex-
isting law for justifying bypassing landowners’ consent
when establishing a new route.

5. It should be possible to establish a route on private prop-
erty without the landowner’s consent whenever there’s a
need to set up a route.

Scaling of Algorithm 1 in the Finnish experiment
One challenge that often arises in applying algorithmic theo-
rems to practice is that even though the asymptotic behavior
is good, the constants involved may still render the algo-
rithm impractical. For instance, the factor of 1

ε2 in Theorem
3 is a factor of 400 for ε = 0.05. We analyze the scaling
of Algorithm 1 in the Finnish experimental data. Recall that
Theorem 3 stated that for fixed ε, the total number of com-
parisons required to find an approximate Borda winner or
ranking is O(m logm).

For ε = 0.05 and 0.1, we show that the total number of
comparisons required scales linearly inm,5 and that the con-
stant involved is not large. As an example, when the derived
trend is extrapolated to the case of aggregating 100 ideas
with 1000 participants, an error of 0.05 only requires each
participant to make 19 comparisons. If we only need an error
of 0.1, then 8 comparisons suffice.

Our method is as follows. For each topic, we compute
n(x) as the total normalized number of collected compar-
isons for which x won. We note that this is not the true
value of n(x) since we did not collect the full set of com-
parisons. However, it is a good approximation because of

5This is a log factor smaller than the upper bound. This could be
because the range of m is not large enough to detect the log factor
or because the distribution of rankings in practice is slightly better
than the worst case.
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Figure 3: The red and blue series show the number of com-
parisons needed to reach an expected error of 0.05 and 0.1
respectively. Each point represents one of the 41 topics.
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Figure 4: The blue series plot the true normalized Borda
scores, while the red series plot the sampled Borda after 281
comparisons, which corresponds to ε = 0.1.
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Figure 5: The blue series plot the true normalized Borda
scores, while the red series plot the sampled Borda after 764
comparisons, which corresponds to ε = 0.05.



the large number of users and comparisons we sample (over
one-eighth of all possible comparisons) at random. Algo-
rithm 1 is then simulated by shuffling the collected com-
parisons randomly so that the ordered comparisons corre-
spond to a sequence of samples of Algorithm 1. We repeat
this 100 times and calculate the average value of ε achieved
at each point in time (see Figure 2 for an example of how
ε evolves in a single simulation - the average values are of
course much smoother). We find the time at which ε equals
0.05 and 0.1 and plot this against the number of ideas in that
topic.

Our results are summarized in Figure 3. The main ob-
servation to note is that the data series has a good linear
fit, and that the constants are reasonable. Given a number
of ideas, one can use the linear trend to calculate the to-
tal number of comparisons needed to achieve a desired ap-
proximation. Since the comparisons are randomly assigned,
the expected number of comparisons per participant can be
calculated by dividing the resulting number by n. For in-
stance, when x = 100 and n = 1000, the linear trends
indicate that (191 ∗ 100 − 517)/1000 ≈ 18.6 compar-
isons per participant are needed to achieve ε = 0.05 and
(84 ∗ 100− 228)/1000 ≈ 8.2 are needed for ε = 0.1. If one
only needs to find winning ideas, one can do even better.

In the example simulation shown in Figure 2, the error
reached and stayed below 0.1 at 281 comparisons, and did
so for an error of 0.05 after 764 comparisons. Figures 4 and
5 give a sense of what ε = 0.1 and ε = 0.05 mean by plotting
the normalized borda score vectors n̂(x) as calculated by the
counts of Algorithm 1 along with the real borda scores n(x).
It is important to point out that the rankings returned at each
of these times is already exactly identical to the true rank-
ing, which means that ε is actually equal to 0 by the broader
definition we give. Our calculation of ε in these simulations
is actually only an upper bound on the true error since we
calculate it based on one specific choice of the normalized
borda score vector, and not the one which finds the tightest
bound on ε.

Decreasing elicitation time with partial rankings
As noted previously, the comparison data we collected was
elicited through rankings of different sizes. We find that elic-
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Figure 6: (a) The three series are the three quartiles (Q1,
Q2, Q3) of the time it takes to rank some number of propos-
als. We can see that this time scales linearly in this range.
(b) When we normalize by the number of bits in a ranking
(log2 k! for a ranking of size k), we see that the time per bit
of information drops off so that by six proposals, the time
per bit has been cut to one-third of the initial time.

iting partial rankings may be a useful approach to decreasing
evaluation time.

Figure 6a plots the time it takes for participants to com-
plete rankings of differing sizes. Since there were many out-
liers (possibly occuring when participants left their browser
window open), we plot these times in terms of the quartiles.
The second quartile is the median value, and the first and
third quartiles mark off the middle 50% of the values. One
can see that the time approximately follows a linear trend in
this regime.

Figure 6b plots the time per bit of information that partici-
pants take to complete a ranking of size k. Since there are k!
different rankings of length k, the number of bits in a rank-
ing is log2 k!. By using partial rankings of length three, one
can already reduce the elicitation time by around one-third.
With partial rankings of length four or six, the elicitation
time is reduced by around half or two-thirds respectively.

Further improvements for use in practice
Dynamic sampling improves elicitation time
Algorithms 1 and 2 use simple random sampling to signifi-
cantly improve elicitation time from previous lower bounds.
In this section, we show that if one only needs to find a sin-
gle winning idea (and not a full ranking), one can further re-
duce elicitation time by dynamically sampling comparisons
through the use of multi-armed bandit algorithms. The in-
tuition is that one should be able to quickly get rid of ideas
which are ranked very poorly and for which we can quickly
determine that they are not ε-winners. While we will spend
most of our time considering how to find an ε-Borda win-
ner, the techniques used here can be applied in the exact
same manner to decreasing elicitation time for finding an
ε-Condorcet winner.



Borda The main intuition to Theorem 3 was to notice that
the Borda score of an idea x is proportional to the proba-
bility that x wins a randomly sampled comparison. This al-
lows us to view Algorithm 1 from the perspective of multi-
armed bandits (Bubeck and Cesa-Bianchi 2012). In this set-
ting, each idea x ∈ C can be viewed as an arm (think of a
slot machine in a casino) which, when pulled, returns a re-
ward of either 1 with probability p(x) = s(x)/(n(m − 1))
or 0 otherwise6. Each time we elicit a random comparison
containing x, this is analogous to pulling the arm since the
probability of winning the comparison is exactly p(x). The
goal is then to identify the best arm (or approximately best
arm) with a small number of arm pulls.

This problem is known as the ‘best arm identification’
problem in the multi-armed bandit literature and has been
studied by (Even-Dar, Mannor, and Mansour 2006). They
propose an algorithm called Successive Elimination (Algo-
rithm 3), which we adapt to our setting.

Theorem 6. For any ε, δ ∈ (0, 1), Algorithm 3 with N =
O( 1

ε2 ln m
δ ) returns an ε-Borda winner with probability at

least 1 − δ. Moreover, the total number of comparisons
elicited is7

O

(∑
x∈C

min

[
1

ε2
,

1

(p(x∗)− p(x))2

]
ln
m

δε

)

Proof. We sketch the proof here for the reader’s conve-
nience. Details can be found in (Even-Dar, Mannor, and
Mansour 2006). Let N(x) be the total number of rounds for
which idea x is in set S, and let T = the total number of
comparisons elicited. Clearly, T =

∑
xN(x).

The basic idea is to first show that for any idea x, UB[x]
after t = O( 1

(p(x∗)−p(x))2 ln m
δε ) rounds must be less than

LB[x∗] at t. Once this happens, x is no longer in the
set S which means that N(x) = O( 1

(p(x∗)−p(x))2 ln m
δε ).

But since we also know that the maximum number of
rounds is N = O( 1

ε2 ln m
δ ), this implies that N(x) =

O(min
[

1
ε2 ,

1
(p(x∗)−p(x))2

]
ln m

δε ). Summing up over all
ideas gives us our bound for T .

What remains is to show that the idea returned is an ε-
Borda winner. To do this, one can show that with probability
at least 1− δ,

• any non ε-Borda winner will have been removed from S
after all N rounds, and

• x∗ is never removed from S.

6In Algorithm 1, we sampled random pairs of ideas at a time.
This is equivalent to pulling arms corresponding to each of the sam-
pled ideas (even though they are dependent, all pulls of a given
arm are still independent). However, it is easier to see the analogy
to multi-armed bandits if one considers a slight variation in which
each idea x is compared against 1

ε2
log m

δ
random idea (with ran-

dom voters) with count[x] equaling the number of wins received.
7Slightly tighter bounds (within the log factors) can be given

for both N and the total number of comparisons elicited. However,
we chose to present the bound in this way to best communicate the
intuition.

ALGORITHM 3: Dynamically approximating the Borda rule via
Even-Dar et al.’s Successive Elimination
Input: m ideas, n participants, a number of rounds N
Output: An output winner
S = C;
count[·] = 0;
for t← 1 to N do

for x ∈ S do
Sample an idea y and a participant v uniformly at
random;
if x �v y then

count[x] = count[x] + 1;

UB[x] = count[x] +
√
t ln 4mt2

δ
;

LB[x] = count[x]−
√
t log 4mt2

δ
;

S = S \ {x ∈ S : UB[x] ≤ LB[y] for some y};
return the idea maximizing count[·];

This means that the idea maximizing count[·] must be an ε-
Borda winner.

We can now apply this to a simple voting scenario in
which people are mostly divided into two camps which vote
in opposite manners. As shown in Corollary 1, if one camp
clearly dominates the other, then Algorithm 3 is essentially
able to shave off an extra factor of 1

ε to a total of only
O(mε ln m

δε ) comparisons.

Corollary 1. Let C = {0, 1, . . . ,m − 1} and consider a
set V of voters, where |V | = n. Suppose that k = n

2 (1 + γ)
voters have the ranking 0 � 1 � . . . � m − 1 and that the
other n

2 (1−γ) have the ranking m−1 � m−2 � . . . � 0,
where γ ∈ [0, 1]. Then Algorithm 3 will require

O

(
m

εmax(ε, γ)
log

m

δε

)
comparisons.

Proof. It is not hard to verify that the Borda score of idea i
is s(i) = n

2 (1+γ)i+ n
2 (1−γ)(m−1− i) = n

2 (1−γ)(m−
1) + nγi and that

p(i) =
1

2
(1− γ) +

γi

m− 1

The Borda winner s∗ is ideam−1 with p(m−1) = 1
2 (1+γ)

so that all ideas with p(i) ≥ 1
2 (1 + γ)(1 − ε) are ε-Borda

winners. Plugging in and solving shows us that all ideas i ≥
max(0, 1− 1+γ

2γ ε)(m− 1) are ε-Borda winners.

If 1+γ
2γ ε ≥ 1, then all ideas are ε-Borda winners, so that we

still require O(mε2 log m
δ ) comparisons. However, if 1+γ

2γ ε <

1, then we have that the total number of comparisons elicited
are O(A+B), where

A =
1 + γ

2γ
ε(m− 1)

1

ε2
log

m

δ
≤ m

γε
log

m

δ



and

B =

(m−1)(1− 1+γ
2γ ε)∑

i=0

(
m− 1

γ(m− 1− i)

)2

 log
m

δε

=
(m− 1)2

γ2
log

m

δε

(m−1)(1− 1+γ
2γ ε)∑

i=0

1

(m− 1− i)2

≤ (m− 1)2

γ2
log

m

δε

1

m( 1+γ
2γ )ε

≤ 2m

γε
log

m

δε

Noting that γ ≥ ε in this case concludes our proof.

Condorcet The method for dynamically sampling an ε-
Condorcet winner is similar, so we will only briefly describe
it. In Algorithm 2, the outer loop is essentially doing the
same process as Algorithm 1, except that each pair of ideas
gets compared by multiple voters. Therefore, we can apply
essentially the same modification of Algorithm 1 to Algo-
rithm 3 to the outer loop of Algorithm 2. The only difference
is that ε is relative to a p(x) of 1 since a Condorcet winner
is defined as an idea which beats all other ideas. Because
of this, we do not need to keep track of lower bounds. We
simply remove ideas as their upper bound falls below 1 − ε
since this means they cannot be an ε-Condorcet winner.

This gives us the bound of

N1 = O

(∑
x∈C

min

[
1

ε2
,

1

(1− p(x))2

]
ln
m

δε

)
where p(x) is the fraction of ideas against which x wins at
least 1

2 (1 − 2ε) fraction of votes. However, we can further
improve this to get that

N1 = O(
m

ε
log

m

δε
)

independent of the voter rankings. This is because only
O(kε) fraction of candidates can have p(x) ≥ 1−kε, which
allows us to upper bound the general bound.

Handling streaming ideas
Another challenge in implementing the aforementioned al-
gorithms in practical crowdsourcing scenarios is that ideas
may be arriving in a streaming manner as they are generated
by crowdsourcing participants. In such scenarios, one needs
to be able to return the ε-approximate winner at any given
time. This may cause one to sample more comparisons than
needed for the early ideas than one needs once all the ideas
have been generated.

We will only discuss the case of finding an ε-Borda win-
ner. However, the exact same modification can be made
to finding an ε-Condorcet winner. Concretely, we consider
times t = 1, 2, . . . ,m. Idea ct is generated at time t. Any
number of comparisons can then be sampled, but one needs
to be able to return an ε-Borda winner at that time.

Unlike the prior section, we are unable to take advantage
of results in the multi-armed bandit literature. In the standard
multi-armed bandit setting, dynamically arriving arms can
be easily dealt with since the arms are independent. In the
case of our voting scenario, this is not true since a new idea
also changes the Borda score (and thus the probabilities) of
existing ideas. This in turn invalidates the past comparisons
sampled since they were sampled for a different p(x).

A naive approach would be to simply toss away the old
comparisons and start over. This would be disastrous since
the number of comparisons sampled for each arm would
then increase to

∑m
k=1O(log k) = O(m logm). In this sec-

tion, we show that one can handle dynamically arriving ideas
without increasing the number of comparisons elicited sig-
nificantly. The key is to notice that we can reuse most of our
past comparisons.

Our algorithm for sampling comparisons at each time t is
codified in Algorithm 4. At the beginning of time t = k+ 1,
there are k + 1 total ideas, Ck+1 = {c1, c2, . . . , ck+1}. The
first k arms c1, c2, . . . , ck have already been pulled c

ε2 log k
δ

times, but with incorrect sampling since ck+1 did not exist
at that time. Nevertheless, an important fact is that for any
given arm x ∈ Ck, each pull is the result of a randomly
sampled voter v and the a randomly sampled idea from Ck \
x.

Thus, the following procedure is a valid sample from the
newly updated arm x: with probability k−1

k , reuse a compar-
ison from the previous round; otherwise, sample a random
voter v and have him compare x with ck+1

8. We can repeat
this until we have c

ε2 log k+1
δ valid samples.

Theorem 7. Algorithm 4 elicits comparisons that allows
one to find the ε-Borda winner at each time. Moreover, at
time t = m, the total number of comparisons elicited for
one arm throughout the process is

O

(
1

ε2
log

m

δ
lnm

)
with probability at least 1− δ.

Proof. At any time k, one can find an ε-Borda winner by
simply calculating the number of wins in Z ′(x) for each
idea x and then returning the idea with the largest number
of wins. This follows from the fact that Algorithm 4 ensures
that Z ′(x) consists of c

ε2 log k
δ randomly sampled compar-

isons, which allows us to apply the same proof as Theorem
1.

Therefore, our main challenge is to show that for any
m, the total number of comparisons elicited in times t =
2, . . . ,m is not too large (at time t = 1, there are no com-
parisons elicited since there is only one idea).

Note that any newly sampled comparison corresponds to
some uki, k ∈ {2, 3, . . . ,m}, i ∈ {1, 2, . . . , cε2 log k

δ } and
only in the condition that either

• uki ≤ 1
k−1 or,

8Note that we are only reusing comparisons from the previous
round for simplicity. One can generalize the given algorithm ap-
propriately to reuse comparisons from all prior rounds.



ALGORITHM 4: Streaming Borda subroutine after idea ck+1 ar-
rives
Input: The newly submitted idea ck+1, the n participants, the k

prior ideas Ck, and the set of c
ε2

log k
δ

prior comparisons
Z(x) for each x ∈ Ck (each of which is represented as a
tuple (c1, c2, v) containing the two ideas compared and the
voter)

Output: A set Z′(x) of c
ε2

log k+1
δ

corresponding comparisons
per idea

for x ∈ Ck do
Z′(x) = ∅;
for i← 1 to c

ε2
log k+1

δ
do

u(k+1)i ∼ Unif[0, 1];
if u(k+1)i ≤ (k − 1)/k and |Z(x)| > 0 then

Let z be an arbitrary comparison in Z(x);
Z(x) = Z(x) \ z;
Z′(x) = Z′(x) ∪ z;

else
Sample a participant v uniformly at random;
Z′(x) = Z′(x) ∪ (x, ck+1, v);

Z′(ck+1) = ∅;
for i← 1 to c

ε2
log k+1

δ
do

Sample an idea y and a participant v uniformly at random;
Z′(ck+1) = Z′(ck+1) ∪ (ck+1, y, v);

return Z′(x) for all x;

• there are no more comparisons from the previous round
to reuse.

Let Iki be an indicator variable for the event in which a
newly sampled comparison is made after sampling uki. The
total number of comparisons elicited is then

T =

m∑
k=2

c
ε2

log kδ∑
i=1

Iki

We now split all uki into two sets: U1 = {uki : 1 ≤ i ≤
c
ε2 log k−1

δ } and U2 = {uki : c
ε2 log k−1

δ < i ≤ c
ε2 log k

δ }.
For uki ∈ U1, it cannot be the case that there are no com-

parisons from the previous round to reuse since the previ-
ous round has c

ε2 log k−1
δ comparisons. Therefore, a newly

sampled comparison only occurs iff uki ≤ 1
k−1 . From this

observation, and by defining T1 =
∑

k,i:uki∈U1

Iki, we have

E[T1] =

m∑
k=2

c
ε2

log k−1
δ∑

i=1

1

k − 1
=

m−1∑
k=1

c
ε2

log kδ∑
i=1

1

k

=

m−1∑
k=1

1

k

c

ε2
log

k

δ
≤
∫ m

1

1

k

c

ε2
log

k

δ
dk

=

∫ ln m
δ

ln 1
δ

c

ε2
u du =

c

2ε2

[
ln2 m

δ
− ln2 1

δ

]
≤ c

ε2
ln
m

δ
lnm

But then a Chernoff bound gives

Pr[T1 ≥
2c

ε2
ln
m

δ
lnm] ≤ exp(− c

4ε2
ln
m

δ
lnm) ≤ δ

m

We now define T2 =
∑

k,i:uki∈U2

Iki. But since Iki ≤ 1, we

have the trivial bound of T2 ≤ |U2| = c
ε2 ln m

δ . Therefore,
since T = T1 + T2, we have that with high probability, T =
O( 1

ε2 ln m
δ lnm).

Conclusion and Future Work
To conclude, our algorithms and experiments show that so-
cial choice functions that were previously thought to place
high cognitive burdens on participants can indeed be imple-
mented at scale, a promising sign for the use of crowdsourc-
ing in democratic policy-making.

There are many directions to pursue for future work. The
theoretical results we found relied heavily on nice interpre-
tations of definitions for the Borda rule and the Condorcet
winner. Continuing this work on other voting rules may re-
quire more involved algorithms. Also, it would be useful to
find algorithms that elicit ε-Condorcet winners with respect
to the swap distance as described in the case of the Borda
rule.
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